Le processus de fabrication de composants dans différentes industries ne démarre pas immédiatement. Il faut d'abord fabriquer les prototypes.
Les prototypes sont un élément essentiel de la phase de développement lorsqu'il s'agit de fabriquer des prototypes métalliques. Certains des aspects à prendre en compte sont présentés dans le guide ci-dessous. Poursuivons donc notre lecture.
Qu'est-ce qu'un prototype métallique ?
Le prototypage métallique consiste à créer une esquisse du produit métallique, avant de lancer la production. Les concepteurs testent ces modèles et, le cas échéant, les mettent à jour.
Le prototypage métallique est un processus crucial dans la plupart des industries et offre de nombreux avantages.
Quand choisir le métal pour le prototypage ?
Les prototypes métalliques sont créés pour vérifier leur fonctionnalité et leurs performances. Il est important de les aligner sur le processus de production.
Le prototypage métallique favorise la rentabilité et un développement harmonieux, ce qui permet de transformer les prototypes métalliques en pièces réelles.
Normalement, les plastiques sont choisis pour le prototypage, mais il est difficile de transformer les plastiques en métaux, et il est donc plus facile de convertir les modèles en métal en pièces métalliques.
Avantages des prototypes métalliques
Les prototypes métalliques présentent de nombreux avantages, dont voici quelques-uns :
- Les prototypes en métal sont très résistants. Les métaux comme l'acier inoxydable ont une dureté élevée, ce qui garantit une haute limite d'élasticité. Ces prototypes sont durables et peuvent résister à de multiples conditions.
- Les métaux ont un point de fusion élevé et ne se dégradent pas au fil du temps.
- Le métal est moins cher que le plastique lorsqu'il est utilisé dans différentes applications.
- Les pièces métalliques sont esthétiques et compatibles avec les méthodes de finition.
- Les prototypes métalliques sont polyvalents ; ils peuvent être soumis à un large éventail de processus et sont donc compatibles avec de multiples applications.
Métaux courants utilisés dans le prototypage rapide
Prototypage rapide utilise deux des métaux les plus courants, à savoir l'aluminium et l'acier. D'autres métaux comme le cuivre, le chrome, le magnésium et le cuivre sont également utilisés.
Le titane est un métal qui offre une résistance et une densité élevées, ainsi qu'un point de fusion élevé. L'aluminium est également léger et offre une grande facilité d'usinage. Il présente en outre de nombreux avantages, notamment l'évolutivité, la résistance à la corrosion et une conductivité électrique et thermique élevée.
Les alliages de magnésium sont également utilisés pour la production de prototypes métalliquesIls peuvent être utilisés dans des applications nécessitant une faible densité de poids et une conductivité thermique élevée.
Étapes de la fabrication de prototypes métalliques
Les étapes de la fabrication de prototypes métalliques sont les suivantes :
- La première étape est celle de la conception ; une esquisse du modèle est créée soit sur papier, soit dans le logiciel. Le logiciel de CAO est utilisé pour créer la visualisation des prototypes.
- Sélectionnez les métaux pour lesquels vous souhaitez faire fabriquer les prototypes. Vous devez choisir en fonction de l'application et des propriétés dont vous avez besoin.
- Choisissez le processus de fabrication en fonction du délai, du coût et de la méthode de laminage.
- Fabriquer le prototype selon le processus de fabrication sélectionné.
- Maintenant, testez et évaluez s'il répond aux spécifications requises et mettez-le à jour en conséquence.
Comment réaliser un prototype en métal ?
Il existe différents procédés de fabrication pour réaliser des prototypes métalliques, dont certains sont décrits ci-dessous :
Usinage CNC
Usinage CNC utilise le procédé des machines CNC pour la fabrication de prototypes métalliques.
Les machines CNC utilisent un processus soustractif de fabrication, en enlevant le métal, puis en obtenant les formes requises pour le composant. L'usinage CNC est compatible avec des métaux tels que l'aluminium, le zinc, l'acier et le magnésium.
Impression 3D
Impression 3D est une méthode efficace pour fabriquer des prototypes en métal. L'impression 3D est un processus additif qui consiste à fabriquer des composants couche par couche.
Elle utilise différentes technologies telles que le DMLS et le SLM. À l'aide de faisceaux laser, ils peuvent créer des couches de pièces en utilisant différentes poudres métalliques. La conception assistée par ordinateur (CAO) permet d'obtenir les conceptions requises et de réaliser des formes complexes et des caractéristiques détaillées.
Fabrication de tôles
Prototypage de tôles est utilisée pour la fabrication de pièces selon différents procédés. Le processus consiste à découper, déformer et assembler les pièces de tôle.
Le processus utilise des plaques de tôle sur un plateau pour découper les formes et obtenir les pièces requises.
Le processus de fabrication de tôles implique la découpe au laser, le poinçonnage, le pliage et le soudage. Il permet de créer des prototypes composés de supports, de boîtiers et d'autres pièces.
Fonte des métaux
Le processus de moulage des métaux consiste à verser du métal en fusion dans les moules, qui comportent des cavités, et à créer les formes requises. Une fois le métal liquide solidifié, le prototype souhaité est obtenu. Il s'agit d'une méthode efficace pour produire des composants de différentes formes.
Extrusion d'aluminium
Extrusion d'aluminium permet de créer des propriétés avec les matrices, qui peuvent produire des pièces de forme plus longue. Ces pièces sont coupées à la longueur voulue après avoir été extrudées.
L'extrusion d'aluminium est surtout utilisée pour la production de grands volumes, mais aussi pour la création de prototypes métalliques. Des pièces telles que des supports, des joints et des barres métalliques sont également fabriquées.
Considérations relatives à la réalisation de prototypes en métal
Lors de la fabrication de métal prototypesLes considérations suivantes sont à prendre en compte :
Qualité
La qualité du prototype métallique est comparée à celle de la production finale, et il est donc important de s'assurer que la qualité du prototype est à la hauteur. Il offre une durabilité et garantit la finition de surface souhaitée.
Objectif
L'objectif des prototypes métalliques est basé sur les étapes de développement du produit ; chaque étape a des exigences fonctionnelles spécifiques et des caractéristiques souhaitées. Il détermine la qualité du prototype et a également un impact sur sa fonction.
Complexité des pièces
Les caractéristiques du prototype et la complexité de sa conception ont une incidence sur le choix du processus. Chaque procédé offre un type de complexité différent. Impression 3D offre un processus approprié pour les composants complexes et l'usinage CNC pour les pièces à tolérance serrée.
Quantité
Les pièces prototypes dont vous avez besoin doivent également être prises en compte lors du choix de la méthode de fabrication. Certains procédés sont conçus pour des volumes moindres, d'autres pour des volumes importants.
Coût/budget
Lorsque vous choisissez le processus de prototypage de pièces métalliques, veillez à prendre en compte le temps et l'argent consacrés à la fabrication. Choisissez le processus de prototypage de pièces métalliques en fonction du budget dont vous disposez.
Applications du prototype métallique
Les prototypes métalliques ont diverses applications, dont voici quelques-unes :
Tests fonctionnels : Les prototypes métalliques permettent de tester la durabilité et les propriétés mécaniques des pièces en les soumettant à des applications réelles.
Essais structurels : Les prototypes métalliques sont également évalués en les soumettant à des charges lourdes afin de vérifier leur capacité de charge.
Outillage : Des prototypes d'outils et de moules sont également fabriqués pour les tester.
Conclusion
Il est très important de comprendre tout ce qui concerne le prototypage métallique afin de pouvoir obtenir les composants requis sans défaut lors de la production finale.
Nous, à DEK vous offre la possibilité de créer des prototypes métalliques aux formes et caractéristiques complexes à un prix abordable. Prenez donc contact avec nous pour mettre la main sur ces prototypes.
FAQ
Quelles sont les méthodes de fabrication des prototypes métalliques ?
Les différentes méthodes de fabrication de prototypes métalliques sont l'usinage CNC, l'impression 3D, la fabrication de tôles et l'extrusion d'aluminium.
Quel est l'objectif du prototypage métallique ?
L'objectif du prototypage métallique est de créer des modèles des composants qui seront utilisés dans différentes applications. L'essai de ces prototypes permet d'apporter des améliorations.
Quels sont les matériaux adaptés au prototypage métallique ?
Les métaux adaptés au prototypage de pièces métalliques sont l'aluminium, le titane, le cuivre et l'acier inoxydable.
Les métaux sont polyvalents et sont donc utilisés dans diverses applications. Il existe différents types de métaux, notamment les métaux ferreux et non ferreux.
Le guide ci-dessous donne un aperçu détaillé des différents types de métaux non ferreux. Si vous souhaitez en savoir plus sur ces métaux, l'article ci-dessous les explore.
Qu'est-ce qu'un métal non ferreux ?
Les métaux non ferreux sont des métaux qui ne contiennent ni fer ni fer. Par conséquent, tous ces métaux purs sont dits non ferreux, à l'exception du fer.
Ces métaux sont coûteux mais offrent d'excellentes propriétés telles que la résistance à la corrosion et à la rouille, la facilité d'usinage et la nature non magnétique.
Les métaux non ferreux sont recyclables et consomment également moins d'énergie lorsqu'ils sont recyclés. Les excellentes propriétés des métaux non ferreux incitent les fabricants à ignorer leur coût.
Il existe de nombreux types de métaux précieux et non précieux qui entrent dans la catégorie des métaux non ferreux.
Histoire des métaux non ferreux
Métaux non ferreux sont les premiers métaux utilisés par l'homme.
En raison de leur absence de corrosion, ils ont été adoptés par les humains, et le premier matériau non ferreux découvert a été le cuivre. Les humains ont appris les techniques de moulage et de forgeage en utilisant le cuivre.
Après l'âge du cuivre, le cuivre a été allié à l'étain pour produire du bronze. L'homme a utilisé des métaux non ferreux pendant très longtemps et, 5000 ans avant J.-C., il a mis au point de nouvelles méthodes de fabrication du bronze.
Ils alliaient le cuivre en le fondant et en le mélangeant à des métaux comme l'arsenic et l'étain. L'âge de pierre s'est achevé ici et l'âge de bronze a commencé.
Après la découverte du bronze, de l'argent et de l'or, des ornements ont été fabriqués avec ces métaux au lieu de la pierre et du bois. Aujourd'hui, les métaux non ferreux sont utilisés pour les moteurs de véhicules, la coutellerie, les ornements et bien d'autres choses encore.
Processus de production des métaux non ferreux
Les métaux non ferreux sont traités selon trois méthodes courantes : le moulage à la cire perdue, le procédé de refroidissement des métaux et le procédé de moulage au sable.
Les métaux non ferreux sont connus pour leur grande conductivité, leur résistance à la corrosion et à la rouille et leurs propriétés non magnétiques. Ils conviennent à la fabrication de composants métalliques et même de pièces structurelles.
Ces métaux sont raffinés par électrolyse et, lors du moulage, les fabricants les ajoutent à la fonte pour créer une fonte aux propriétés améliorées.
Types de métaux non ferreux et leurs propriétés uniques
Les différents types de métaux non ferreux et leurs propriétés sont présentés ci-dessous.
Aluminium
Il s'agit d'un type de métal non ferreux très important, léger et très facile à usiner. Il est utilisé comme métal de base dans de nombreux alliages et est même très rentable.
Aluminium est utilisé dans de nombreuses applications telles que les avions, les automobiles, les cadres de bicyclettes, les canettes de boissons et les yachts.
Titane
Titane a une résistance sans faille et ne se corrode pas. Le titane est très résistant et est utilisé dans des applications liées à l'aérospatiale, au sport, à la médecine et à l'agriculture.
Cuivre
Cuivre a des alliages comme le laiton et le bronze et est utilisé dans de nombreuses applications. Il est utilisé dans les échangeurs de chaleur et les conteneurs de chauffage en raison de sa conductivité thermique élevée. Il est également utilisé pour fabriquer des fils, des couvertures et des ustensiles de cuisine.
Bronze
Bronze est un matériau malléable et léger qui présente une grande résistance à la corrosion. Il offre également une excellente solidité et peut être plié et coupé très facilement. Le bronze est utilisé pour le revêtement des maisons, les gouttières, l'électronique et les enseignes extérieures.
Laiton
Laiton est un alliage de zinc et de cuivre et est composé d'autres métaux comme le nickel et l'étain. Il est très durable et offre une connectivité thermique et électrique élevée. Il est utilisé dans les cloches, les klaxons, les ustensiles, les roulements, les pièces de plomberie et les vannes.
Zinc
Alliages de zinc avec le cuivre pour former le laiton et il offre une excellente résistance à la corrosion.
Il est utilisé dans de nombreuses applications telles que les garde-corps, les ponts suspendus, les échangeurs de chaleur, les toits métalliques et bien d'autres encore. Il aide à disperser la chaleur pendant le processus de fabrication du caoutchouc.
Nickel
Le nickel est un métal argenté qui offre une excellente tolérance à la température, une grande ténacité et une bonne résistance à la corrosion. Il peut acquérir d'excellentes caractéristiques lorsqu'il est allié à d'autres éléments. Il est utilisé dans les avions, les équipements marins et les automobiles.
Plomb
Le plomb est l'un des métaux non ferreux les plus lourds ; il est toxique et présente des risques pour la santé. Il est lourd et peut être utilisé pour des pièces résistantes à la corrosion. Il est dense et ductile, mais sa conductivité électrique est médiocre.
Il est utilisé dans la fabrication de câbles électriques, de ceintures de levage, de réservoirs d'acide et de batteries.
Argent
L'argent est un métal mou qui a un aspect brillant. Il offre une grande malléabilité et une bonne conductivité. Il est utilisé dans de nombreuses industries et est choisi pour la fabrication de roulements de moteurs, de bijoux, de vaisselle et d'autres types de pièces.
L'or
L'or est un métal non ferreux qui présente une excellente malléabilité. Il offre une résistance à la corrosion et une grande ductilité. Il ne réagit pas avec d'autres produits chimiques. Il est utilisé dans la fabrication de bijoux tels que les bracelets, les chaînes et les bagues.
Tableau des propriétés et des applications des métaux non ferreux
Métaux non ferreux | Conductivité électrique | Conductivité thermique | Résistance à la corrosion | La force | Applications |
Aluminium | Modéré | Haut | Modéré | Modéré | Automobiles, avions, boîtes de conserve |
Titane | Faible | Modéré | Haut | Haut | Médecine, aérospatiale et agriculture |
Cuivre | Très élevé | Haut | Modéré | Faible | Fils, plomberie, ustensiles de cuisine |
Bronze | Modéré | Modéré | Haut | Modéré | Gouttières. sculptures |
Laiton | Haut | Haut | Modéré | Modéré | Vannes, cloches, pièces de plomberie |
Zinc | Faible | Modéré | Haut | Faible | Ponts suspendus, glissières de sécurité |
Nickel | Modéré | Modéré | Haut | Haut | Applications marines, automobiles |
Plomb | Très faible | Faible | Modéré | Faible | Batteries, réservoirs d'acide |
Argent | Très élevé | Très élevé | Faible | Faible | Vaisselle, bijoux |
L'or | Haut | Haut | Très élevé | Faible | Bijoux, Connecteurs électriques |
Différences entre les métaux ferreux et non ferreux
Métaux ferreux contiennent une grande quantité de fer, tandis que les métaux non ferreux n'en contiennent pas. Les fabricants choisissent les métaux ferreux pour leur résistance et leur durabilité, et ils sont couramment sélectionnés par l'industrie de la construction.
Les métaux non ferreux, quant à eux, sont résistants à la corrosion et malléables ; c'est pourquoi ils sont utilisés pour la fabrication de gouttières, de toits, de bijoux, etc.
Applications courantes des métaux non ferreux
Les applications courantes des métaux non ferreux sont les suivantes :
- Les tuyaux en cuivre sont utilisés dans la plomberie pour le chauffage et l'approvisionnement en eau.
- Le câblage électrique est réalisé en cuivre, qui offre une conductivité électrique élevée.
- Les matériaux de couverture sont également non ferreux, car ils offrent une durabilité et une résistance à la corrosion.
- L'aluminium est utilisé dans l'industrie aérospatiale en raison de sa résistance et de son poids.
Conclusion
Les métaux non ferreux sont omniprésents et chaque composant en est constitué. Si vous êtes à la recherche de composants non ferreux précis et de haute qualité, vous pouvez nous contacter à l'adresse suivante DEK.
Nous proposons des procédés de fabrication spécialisés utilisant les meilleurs métaux non ferreux pour vos projets.
Injection molding doesn't need any introduction as it has been catering to many industries for years. However, under the head of injection molding comes two very important terms: insert molding and overmolding.
If you are planning to start a new project and want to learn the difference between insert molding vs overmolding, the guide below is for you. So, let's read.
What is Insert Molding?
Insert molding is a process that assembles the plastic component with a metal insert. The plastic is injected into the mold. As soon as the plastic solidifies, the component and insert are assembled.
Insert molding is mostly used to create metal-attached plastic components. This process is commonly observed when creating fasteners so that they can help assist with assembling different products.
Benefits of Insert Molding
Insert molding offers various benefits, and the most important ones are discussed below:
- Injection molding is known for mass production. Hence, it offers the economics of scale when it comes to choosing the injection molding process.
- One can manufacture these components at a low cost. Moreover, the assembling process also simplifies, and the need for CNC machined components is eliminated, helping to save.
- The combination of metal and plastic materials enhances the performance of the components. The company has the benefits of both: the metal part allows the component to be made strong and stiff, and the plastic part helps reduce weight.
Limitations of Insert Molding
Insert molding has some limitations along with advantages, and these are as follows:
- Insert molding has a two-step manufacturing process; the first step requires manufacturing metal components and then the injection molding process for assembly. It increases the hassle of the process.
- The complexity of the component also increases, especially when the custom metal part is manufactured and hence the integration gets complex.
What is Overmolding?
Overmolding is a type of injection molding, but in this process, the molding takes place over another component, which is also made using moulage par injection.
The process combines different types of plastics to achieve functionality or aesthetics. It is used in screwdrivers for making their handles, toothbrushes or power drills.
Benefits of Overmolding
The benefits of overmolding are as follows:
- Overmolding allows designers to create components that have multiple materials, which help add properties and visual complexity.
- It doesn't require any adhesive to combine the materials because the molten materials are fused in the other part, which reduces cost and enhances durability.
- Overmolding helps mold soft seals in the components, and the seal forms a groove in the part where the o-ring can be installed.
Limitations of Overmolding
Some of the limitations of overmolding are as follows:
- Overmolded components are manufactured in two steps, which increases the manufacturing time and is expensive. It needs two tools or two-shot molds, which adds to the cost.
- The process of bonding two different materials with one another in an injection mold run leads to the chance of delamination.
- In cases where the appropriate temperatures are not maintained, this leads to a problem with bonding and durability.
Differences Between Insert Molding vs Overmolding
The section below highlights the differences between overmolding and insert molding in detail.
Processus
Insert molding consists of injecting just one shot of molten plastic, whereas overmolding requires two shots of molten plastic to be inserted.
Vitesse
Insert molding takes time to mold another layer because the two pieces are manufactured separately. Hence, compared to overmolding, insert molding takes more time.
Overmolding is quick. It doesn't need two pieces to be manufactured separately, and direct molding takes place over the first product to create the second one.
Sélection des matériaux
Overmolding doesn't need adhesive, and the selection of the material needs to be adequate enough to create a strong component.
Similarly, insert molding also doesn't need any additional fasteners as the metal components are already present in the mold.
Coût
Insert molding can help reduce the cost of assembling and can create thousands of parts in a single day. However, overmolding is expensive as it requires double steps.
Common Applications of Insert Molding vs Overmolding
There are many applications of insert molding and overmolding as they cater to versatile industries, and some of these are discussed below:
Automobile
In the automobile sector, the two processes allow the components to have a combination of plastic and metal parts. The process of manufacturing batteries, dash panels, handles, and knobs all use insert molding.
Cosmetics
Most of the equipment used in the cosmetics industry is made using overmolding and insert molding, as they help in enhancing the overall look of the products.
These methods help to create special surfaces of components composed of different colors. Some of the cosmetic products are makeup brushes, bottles of perfumes and even compact powders.
Électronique
The placement of the rubber on the electrical wire is attained through insert molding. It creates coats on the electronic products and makes handling them safer.
How to Choose Between Insert Molding vs Overmolding for Your Project
When choosing between insert molding ou surmoulage for your projects, some of the considerations that you must keep in mind are highlighted here. It will help you make the relevant decisions.
Overmolding is suitable when thermoplastics and rubber are used, and multiple colored layers are used on the components. Moreover, the components do not need to be disassembled later on.
Insert molding is suitable where a prefabricated substrate is used, and the metals or computerized parts are contained in the substrate.
Conclusion
Understanding the differences between overmolding and insert molding is very important to make a relevant decision between the two processes and their selection. Hence, the guide above must have helped you in this regard.
If you are looking forward to having hands on the components made through the two processes, DEK can assist you.
FAQ
What is TPE overmolding?
TPE overmolding is a process of injecting TPE into an existing plastic part.
Is insert molding the same as 2K injection molding?
Insert molding is composed of creating a secondary component on a substrate, 2K molding is a double shot injection molding that injects different materials in a mold with multiple chambers.
What is two-shot injection molding?
The shot injection molding process involves molding multiple parts using a single tool.
What are inserts in injection molding?
The inserts are metal parts that are used for manufacturing components by having molten plastic with it using injection molding.
Machined components require secondary processes that improve their surface finishing and enhance their functionality. There are different types of surface finishing processes and among them, e-coating is also widely adopted.
The guide below tells everything about what e-coating is, how it is applied, and what benefits it offers. So, let's read below.
What is E-Coating?
E-coating is a surface finishing process in which the components are submerged in a bath of a water-based solution containing epoxy or paint. The layer of paint sticks to the surface until the desired finished component is attained.
How E-coating Works?
The process of e-coating has several steps, and each step is discussed below.
Nettoyage
The components to be coated are first cleaned using degreasers so that any dirt, impurities, or oil can be removed, improving the adhesion of the coating.
Rinsing
After cleaning the component, make sure to rinse it so that the residues from the component are removed.
Surface Treatment
The surface of the component is treated with either chromate or phosphate coating, which enhances the adhesion and makes it resistant to corrosion. It is basically a process where the component is stabilized for an improved coating impact.
Submerging in Solution
The component is then rinsed again using deionized water and then immersed in a water-based solution bath that has the coating.
Electrocoating
Electric current is then applied to the components, which creates attraction between the particles and deposits the coating on the surface.
Curing and Cooling
Once the coating is carried out, the components are kept at a high temperature for curing so that the coating is hardened and sticks perfectly to the surface. Once cooled, the components are ready for use.
Characteristics of E-Coating
E-coating has some characteristics that make it suitable for applications, and these are as follows:
- It offers uniform coverage and even covers areas that are hard to reach.
- It ensures protection against corrosion.
- The e-coated component is hardened and, hence, resistant to impact, wear, and chipping.
- The water-based solutions used for e-coating ensure environmental friendliness.
Advantages and Disadvantages of E-Coating
E-coating has benefits as well as limitations, and these are highlighted in the section below:
Avantages
- The process of e-coating is cost-effective. If high-volume components are coated, it offers economies of scale.
- It is a very simple process and can be carried out very quickly.
- It creates a thin layer on the components, which ensures precision.
- Due to the electric discharge, the particles are attached to the surface evenly and create a uniform coat.
- The components that have been treated with e-coating are easy to clean and maintain.
- It is an environmentally friendly process and can be subjected to recycling.
Inconvénients
- Since e-coating is mostly opted for large-scale components, it may not be available for small-scale projects.
- If thick coating is required, the process of e-coating is not suitable.
- It offers low stability and UV resistance.
Which Materials are Suitable for E-Coating?
The materials that are suitable for e-coating are as follows:
Acier : Steel is a very commonly used material in most applications, and every type of steel can be e-coated. The process creates a barrier of protection, and the components can be kept away from corrosion and rust.
Aluminium : Aluminium is also a very suitable metal which helps with e-coating. It is lightweight so it is used in automobiles, electronics, and aerospace. E-coating these aluminum components ensures resistance against weathering and also enhances the structural integrity of the components.
Zinc : Zinc components are also coated using an e-coating process, which provides a layer of protection against corrosion.
Cast iron: The components made using cast iron are used in applications that need high strength. It helps protect the components from moisture and chemicals, ensuring their life.
Applications of Using E-coating
The applications of e-coating can be observed in various industries, and some of these are as follows:
Automobile : E-coating protects the sheet of steel that is used in the doors and fenders of a car from corroding.
Électronique : E-coating protects the circuit boards on electric applications from oxidation and contamination.
Marine : Steel and aluminum components used in yachts and boats are protected from corrosion.
Aérospatiale : E-coating protects the aircrafts from wearing off and these components consist of hinges, doors, and landing gear.
Things to Consider Before E-coating
Some of the considerations which are important to be taken into account while opting for e-coating are as follows:
- The material chosen for e-coating should be compatible with the process.
- Surface preparation is a prerequisite for the e-coating process to ensure adhesion.
- The thickness of the coating must be determined based on the specifications of the components.
- The components that are subjected to e-coating should have high electrical conductivity to ensure the success of electrocoating.
E-Coating vs. Powder Coating
E-coating and powder coating are processes opted for finition de surface of the components. However, e-coating offers an ultra-thin, uniform coating and helps to cater to components that have intricate shapes.
Meanwhile, revêtement en poudre has the ability to offer multi-colored coating and texture. It is suitable for multiple applications. It is even suitable for outdoor applications as it offers protection against UV rays.
Conclusion
E-coating is a versatile process widely used in different industries. It enhances the surface finish and performance of a component.
If you are looking to have your components finished through e-coating, DEK can be your go-to choice. We have an expert team overseeing the process to ensure a smooth finish and durable results.
Machining processes are used to manufacture components in many industries and applications. There are various types of machining processes, and each has a specific purpose.
Boring and turning are two very commonly adopted processes of machining that are chosen for their accuracy and precision.
If you want to learn about their differences, the guide below features boring vs turning comparison, so let's read.
What is CNC Boring?
CNC boring is a machining process that enlarges the pre-drilled holes with high accuracy. It removes material from the hole and helps to achieve the required surface finish and diameter. The process of CNC boring works on the interior hole and is used in aerospace, automobile, and other industries where tight tolerance is required.
How Boring Works
In CNC boring a cutting tool rotates consisting of a boring bar and is inserted in the pre-drilled hole present within the workpiece. The boring bar moves on the given instructions of the machine.
The CNC machine fits the boring bar in the hole, and as it rotates, the material is removed from the component. The cutting parameters can be adjusted for accuracy like speed and feed rate.
Pros and Cons of CNC Boring
The pros and cons of CNC boring are as follows:
Pour
- CNC boring is a highly precise process that can finish the hole with accurate dimensions and surface finish.
- It is an automated process and is suitable for repeatable operations with minimal error chance.
- CNC boring is compatible with different materials and can easily create holes of different sizes.
- It helps to create deep holes accurately.
- The inner surface finish of the hole is improved due to its high performance.
Cons
- A CNC boring machine is expensive and is not suitable for small-scale production.
- It is slow compared to drilling and takes a lot of time when a large quantity of material is removed.
- It cannot drill a hole; it needs predrilled holes, which it finishes and enlarges.
Qu'est-ce que le tournage CNC ?
CNC turning is a process of machining in which the cutting tool removes material from a component that rotates.
It creates cylindrical parts and is controlled by an automated CNC machine. It helps to ensure uniform and precise results and can manufacture pulleys, shafts, and other components.
How Turning Works
CNC turning rotates the workpiece on a fixed axis, and it has a single-point cutting tool that cuts the material. The workpiece is mounted on the spindle of the CNC lathe, and the machine makes the workpiece spin at a high speed.
The cutting tool is stationary, and as the workpiece rotates, it cuts the material and helps achieve the required shape. After the CNC turning process, secondary finishing operations may be required.
Pros and Cons of CNC Turning
The pros and cons of CNC turning are as follows:
Pour
- CNC turning is a highly precise process that can create consistent dimensions and surface finishes.
- The process of CNC turning is automated, which reduces production time and improves efficiency.
- It is highly versatile and can work with metals, plastics, and even composites.
- It can create components that have complex shapes and contours.
- CNC machining ensures that human intervention is minimal and that the risk of mistakes is also reduced.
Cons
- CNC turning machines require a high initial investment. If you want to produce a low volume of parts, it may be expensive.
- The cutting tools of CNC turning require replacements as they wear out when they work with hard materials.
- CNC turning creates components that are round, and non-cylindrical shapes cannot be manufactured.
- It creates a lot of waste compared to other CNC machining processes.
Difference Between Boring and Turning
The differences between boring and turning are based on their purpose and they are highlighted below in detail:
Processing Size
In the process of CNC turning, there are different sizes of products and it even has multiple fixtures to hold the workpiece. The turning tool moves in two ways, either in a straight line or in the form of a curve, so that the required size is attained.
CNC boring, on the other hand, is mostly chosen for components that are of small size and, hence struggle to offer precision with the large workpieces. The process of CNC boring also has small-sized work tables.
Workpiece Orientation
CNC turning makes the workpiece rotate about its axis, and the cutting tool moves parallel to the axis. It is a process which creates cylindrical shapes. The process of boring involves a workpiece station, and the cutting tool rotates along its axis.
Enlèvement de matériaux
The CNC turning vs. CNC boring difference becomes more visible when it comes to removing material. CNC turning removes materials from the outside of the workpiece. On the other hand, CNC boring removes it from the inside.
Type de machine
CNC turning is carried out by using a lathe, which is the point where the workpiece rotates. CNC boring, on the other hand, is carried out horizontally or vertically through machining centers where the workpiece remains stationary and the cutting tool rotates.
Industry Application
Tournage CNC is used in manufacturing cylindrical components or such parts that have conical features. It is safely used in the aerospace, automobile, and manufacturing industries.
CNC boring, on the other hand, is opted in an industry where the precision of the internal holes of components is important. It is used in the oil and gas industry and automobiles to create precise internal cavities.
Types of Tools Used
The different types of tools used in boring and turning are as follows:
Outils d'alésage
Single Point Boring Bar: It is a boring bar that has a single cutting edge and is used to enlarge the internal holes and attain a fine surface finish.
Adjustable Boring Head: The adjustable boring head is a tool that helps with precision adjustment, and the diameter of the hole can be changed using it.
Twin Cutting Boring Bars: These are cutting boring bars that have two cutting edges and can help create holes with larger diameters and enhance the rate of material removal.
Outils de tournage
Threading Tool: These tools are used for cutting the threads in screws and offer accurate threads.
Parting Tool: It is a tool that helps to cut off a finished component from the workpiece and also has a narrow blade that separates the component from the block of materials.
Grooving Tool: The grooving tool helps to cut channels in the workpiece surface, and o-rings are usually preferred.
Forming Tool: The forming tool opts for machining shapes that have complex geometry in the workpieces.
When to Use Boring or Turning?
When it comes to choosing between boring vs turning and what to use from these machining processes, this section will help you.
Type de matériau
Boring is a process that is suitable for materials that are hard like cast iron and steel. The process of turning is versatile and can work with hard as well as softer materials.
Workpiece Geometry
Boring is a suitable process for internal machining, such as enlarging and finishing the pre-drilled holes. Turning, on the other hand, is suitable for shaping the outer diameter of components that are cylindrical in shape.
Desired Finish and Precision
Boring offers high precision, and the surface finish is excellent for internal holes. Therefore, it is widely adopted for applications that need tight tolerances.
Turning, on the other hand, offers high precision for the external surfaces. It can help achieve a moderate surface finish, and requires secondary processing.
Speed vs. Accuracy
Boring is a slow process, but it is more controlled and offers accuracy for the internal diameters of the components. Turning, on the other hand, helps remove the material from the outer part faster but can offer precision, too.
Conclusion
When it comes to comparing boring and turning, both processes have their own pros and cons. However, they can be chosen based on your own requirements and whether you need to finish the inner part of the component or the outer features.
If you want assistance with the processes for your custom components, DEK can be your go-to solution.
The robotics industry is leading as the most prominent one these days because of the advancement it offers. However, when it comes to manufacturing robotics components, versatile materials are used.
Some of these main materials used in robotics are discussed in the guide below.
Metals and Alloys
The different types of metals and alloys used for manufacturing robotic components are as follows:
Acier inoxydable
Acier inoxydable is used in robotics due to its properties. It offers durability, and it is suitable for use in harsh conditions. The material ensures corrosion and temperature resistance and can be suitable for machining as well.
Components like gears, frames, and motor parts used in robotic systems are manufactured using stainless steel.
Aluminium
Aluminium is used in many industries because of the light weight it possesses. It also offers high resistance against heat and is weldable. Hence, robotic components can be manufactured using an enhanced surface finish and corrosion resistance.
The components for robots manufactured using aluminum are wheels, bearings, and enclosures.
Titane
Titane is used in robotics because it has a high melting point and is biologically inert. It even offers corrosion resistance. However, it is very expensive and requires specialized equipment for welding and casting.
Hence, it is only used for lightweight and strength-oriented components.
Copper, Brass, and Bronze
Cuivre and brass are used in robotic systems because they offer excellent electrical conductivity and resistance against corrosion.
Copper can be chosen for wiring, and brass can be chosen for mechanical parts. Bronze is selected for low friction properties and hence can be a stable material for harsh environments.
Plastiques et polymères
The different types of plastics and polymers commonly used in robotics are as follows:
Acétal
Acetal is a lightweight plastic that has excellent dimensional stability and low friction. It is used in robotics to manufacture components like casing, frames, and housings.
ABS Plastic
Plastique ABS is used in robotics for flexibility, strength, and mold capability. It is used for manufacturing structural components which do not add weight to the robotic applications. The components manufactured are enclosures, housings, and other components.
Nylon
Nylon is a material offering versatility due to its excellent strength and wear resistance. It is used for components of the robots that move like bearings and gears. It has low friction and is also known for self-lubricating properties.
Polyéthylène
Polyéthylène has high impact resistance and chemical inertness.it is also flexible and lightweight hence opted for sliders and bushings. It also resists chemicals and moisture and can be used in moisture-oriented environments.
Matériaux composites
Robotic components are also made using different types of composites, and some of them are as follows:
Kevlar
Kevlar is a synthetic fiber, and it offers a layer of protection that helps the robots deal with different environmental conditions like extreme heat, cold, and pressure. Kevlar is mostly used to cover the robotic arm.
Fiberglass and Carbon Fiber
Fiberglass and carbon fiber are chosen for their high strength. These materials are mostly used for manufacturing insulation, structural panels and housings for robots.
They help with the high performance of the components to enhance the durability and strength of the robots. It is also a lightweight material.
Filled Plastics
Filled plastics are polymer materials that have fillers like carbon fiber or glass fibers so that the mechanical properties can be enhanced. These materials can make the robotic components strong.
They also enhance dimensional stability and heat resistance. They are suitable for housings, robotic arms, and gears.
Elastomeric Materials
The elastomeric materials usually used on robotic components consist of rubber.
Caoutchouc
Rubber is a very important material used in robotics as it is flexible and offers elasticity. Rubber also has the ability to absorb vibrations and shocks and hence is used in wheels, grips, and gaskets.
Unique/ Innovative materials
Some unique materials used for manufacturing robotic parts are as follows:
PCL
Polycaprolactone is a polyester that has a low melting point and is biodegradable. It is used in manufacturing custom components, which consist of sensors, robotics, and some fixtures. They can opt for such components that require reshaping at low temperatures.
Bioplastics
Bioplastics are environment-friendly materials that are obtained from sources like sugarcane, corn scratch, and potato scratch.
They are used in robotics because of their environmental friendliness. They can opt for components like housings, panels, and structural components.
Conclusion
When it comes to manufacturing different types of robotic components using versatile materials, we at DEK offer you a variety of options. We will discuss your requirements and then suggest the material suitable for your robotic component.
Metalloids are highly common elements found in the periodic table between metals and non-metals. These materials are used in many applications and have unique characteristics.
If you are planning to use them in your applications and want to learn more about the properties of metalloids, the guide below can help you. So, let's read.
What are Metalloids?
Metalloids are defined as chemical elements that have chemical as well as physical properties somewhere between metal and non-metals.
There are different types of metalloids with unique characteristics. The metalloids are in the p-block of a periodic table and are present between the metals and non-metals.
What are the Typical Elements of Metalloids?
The different elements which fall under the category of metalloids are as follows:
Boron (B)
Boron is a metalloid that has an atomic number of 5, and it is used in chemical compounds widely. Boron has a crystalline form and a black color; it is a very hard metal.
It is used for hardening glass and steel. Boron-based components like fertilizers and insecticides are used for plant growth.
Arsenic (As)
Arsenic is a risky element that can interfere with humans' respiration process. It has an atomic number of 33.
It can form 3 covalent bonds with métaux and is toxic for plants as well as animals. It is used to harden metal alloys and leads. It is also used as an insecticide.
Silicium (Si)
Silicon is a versatile metalloid that is very common in the construction industry and also in semiconductors.
It has an atomic number of 14 and is very reactive, commonly found in soils, sand, and rocks. It is a poor electrical conductor and is used in manufacturing enamels, glass, ceramics, and semiconductors.
Antimoine (Sb)
Antimony has 51 as its atomic number and is used in paints and alloys. It has a metallic appearance in silver-white. It is brittle and hard in nature. It is a poor electrical conductor and is used in semiconductors in the form of a dopant and also for manufacturing enamel and glass.
Tellurium (Te)
Tellurium is an alloying element that has 52 as its atomic number. It is found in mined ores and has a brittle nature. It dissolves in nitric acid and remains insoluble in water. It makes the alloys resistant to corrosion.
Germanium (Ge)
Germanium is used in transistors and has an atomic number of 32. It has a metallic look and is brittle in nature. It offers poor electrical conductivity and enhances the corrosion resistance of alloys. It is also used in detectors, which are made using infrared and even semiconductors.
Physical Properties of Metalloid
The physical properties of metalloids are highlighted in the section below.
Appears to Have Metallic Luster
Metalloids have a look that is similar to metals– they have a reflective and metallic surface.
Boiling and Melting Points
Metalloids are solid when at room temperature.
Metalloids | Melting Points |
Germanium | 938.3 |
Silicium | 1410 |
Arsenic | 817 |
Boron | 2079 |
Antimoine | 631 |
Tellurium | 449.5 |
Densité
The density of metalloids varies from one another but is less than that of metals and more than non-metals.
Conductivité électrique
Metalloids can work like insulators as well as conductors. They can be modified as per requirements.
For instance, when used for semiconductors, they pass through the process of doping. It is the process in which impurities are added to the metalloids to alter their properties. However, they are still not as conductive as metals in electricity.
Allotropes
Most of the metalloids can offer different allotropic forms as they have different physical properties. The three common allotropes of arsenic are gray, yellow, and black.
Conductivité thermique
The thermal conductivity of the metalloids varies from element to element. They generally have lower thermal conductivity than metals and higher thermal conductivity than nonmetals.
La fragilité
Metalloids are prone to cracking and deforming due to their brittle nature.
Dureté
Metalloids have variable hardness, with arsenic having a hardness of 3.5, whereas boron has a hardness of 9.3.
Chemical Properties of Metalloids
The chemical properties of metalloids compose the following:
Reactivity with Nonmetals
Metalloids are reactive and can easily gain and lose electrons so that they can form ions which can be negatively or positively charged. They also combine with non-metals to form compounds.
Oxidation States
The oxidation states of metalloids vary and are featured in the table below:
Metalloid | Oxidation State |
Silicium | +4, 0 |
Germanium | +2, +4 |
Arsenic | +3, +5 |
Boron | +3, +2, +1 |
Antimoine | +3, +5 |
Tellurium | +4, +6 |
Moderate Ionization Energy
Metalloids have moderate ionization energy, which ranges around 200 kcal/mol.
Intermediate Electronegativities
Metalloid | Electronegativity |
Silicium | 1.9 |
Germanium | 2.01 |
Arsenic | 2.18 |
Boron | 2.04 |
Antimoine | 2.05 |
Tellurium | 2.1 |
Covalent Bonds
Metalloids are known to create covalent bonds. However, they do not make monoatomic ions similar to metals.
Formation d'alliages
Metalloids are very commonly mixed with other elements to form alloys.
Reactivity with Acids
Metalloids have less reactivity with acids. For example, germanium and silicon are insoluble and do not react with acids. Arsenic and antimony react with strong acids.
Known as Amphoteric
Metalloids have properties of both metals as well as non-metals, which makes them known as amphoteric.
Applications of Metalloids
Metalloids have various applications, and some of these are discussed below:
Semiconductors: In semiconductors, germanium and silicon are used, and they can be used in computer chips, integrated circuits, and even solar cells. They have semiconducting properties, which is why they play a crucial role in electronics.
Ceramics and Glass: Arsenic, boron, and silicon are commonly used in céramique and glass as they can work like a refractory agent. Borosilicate glass is also made using them as it can resist chemicals as well as thermal shock.
Alloys: Many alloys also have metalloids to enhance their properties. For instance, silicon is added to aluminum so that it can have more castability and strength. In steel, boron is added to enhance its hardness.
Photovoltaics: Solar cells and some metalloids, like germanium and silicon, are used to help convert sunlight into electricity.
Flame Retardants: Boron compounds, antimony trioxide, and aluminum trihydrate are used to work as flame retardants in many coatings, plastics, and building materials. They help with fire safety.
Distinguishing and Most Useful Properties of Metalloids
The distinguishing properties of each metalloid and its applications are discussed below:
Boron: It is hard and resistant to heat; it is used in combination with silicon to create a glass that can resist thermal shock.
Germanium: Germanium is brittle and hard and very rarely used in semiconductors.
Silicon: Silicon is a shiny and gray metalloid that is used in semiconductors.
Tellurium: It has a brittle nature and enhances machinability when combined with steel.
Arsenic: It is a poisonous metalloid and is used in insecticides.
Antimony: It is brittle and hard, is alloyed with lead, and is even used for manufacturing paints.
Differences Between Metalloids, Metals, and Nonmetals
Propriétés | Métaux | Non-Metals | Metalloids |
Ductilité | Ductile | Brisures | Brisures |
Densité | Haute densité | Low Density | Moderate Density |
Conductivité électrique | Conductivité électrique élevée | Poor electrical conductivity | Intermediate electrical conductivity |
Apparence | Metallic luster | Dull surface | Some have a metallic luster |
State at Room Temperature | Solid | Solid | Solid |
Réflexions finales
When it comes to choosing between metals, non-metals, and metalloids, understanding their properties is crucial. The guide above must have made you understand everything about metalloids and their applications.
If you are planning to have some components manufactured using any material, we at DEK peut vous aider.
FAQ
What composed metalloids?
Metalloids are neither metals nor non-metals but are in the middle of both having combined properties.
How can metalloids be identified?
Metalloids can be identified by looking at their properties. They have a brittle nature and lustrous appearance and stay solid at room temperature.
Can mercury be classified as a metalloid?
No, mercury cannot be classified as a metalloid.
What elements belong to the metalloid group, and how are they used?
The elements in the metalloid group consist of arsenic, boron, antimony, silicon, tellurium, and germanium. They are used in various applications, such as fertilizers, insecticides, and semiconductors.
Automation is taking a lead in almost every sector and the major benefits are enjoyed by the manufacturing industry. CNC robotics have now made the process of precision machining very simple and quick.
The guide below explores everything about CNC robotics in detail, so let's read below to learn more.
What is CNC Robotics?
CNC robotics is a robotic method that improves and helps to boost the CNC machining process. A CNC robot is a very advanced invention that is designed for machining.
It is a type of equipment that looks after the entire project on its own using the protocols programmed. These machines do not wait for any input from the operator.
It offers various advantages to the manufacturing process and helps to manufacture a high volume of products in less time.
Why Choose CNC Robotics for Producing Robotic Parts?
There are multiple reasons that make CNC robotics a suitable method for producing robotic parts, and these are discussed below:
Increased Speed
CNC robotics is known to produce parts in a very short time. The process of machining is very fast and versatile enough to machine complex components. Custom robotic parts can be manufactured using CNC robotics in very little time.
Compatibilité des matériaux
CNC robotics, when used for robot parts, offers high compatibility with materials. It can work with a wide range of plastics as well as metals.
These parts are meant to move and lift items, which requires them to be strong and stiff. Hence, CNC robotics are suitable for manufacturing robotic parts as they work very well with different materials.
Finition de la surface
CNC robotics exercises a lot of control while machining a surface and hence creates components with excellent surface finish.
The components of robots are not only precise but also capable of going through surface finishing operations if needed.
Accuracy & Precision
CNC robotics can help create components that are the same as the specifications required. The precision of CNC robotics is very high, which makes it a suitable option for machining robotic components.
Rentabilité
It is a highly cost-effective process that is equipped with multiple tools. It is versatile and takes very little time to manufacture components. Hence, the one-time investment in the machine later on will offer high affordability in the long run.
Greater Complexity
Components of complex geometries and shapes are manufactured using CNC robotics. The parts that have slots, curves, and pockets can be matched very easily through the process of CNC tools; even the holes can be drilled.
CNC Machines vs CNC Robotics
Usinage CNC and CNC robotics are different in many ways, and these processes can be compared in detail. Some of these comparisons are discussed below.
- The performance of the machine is assessed by looking at the precision and accuracy of machining. CNC robotics have improved over time and have been able to give precision, which ranges between 0.1 to 0.2 mm. At the same time, CNC machining can achieve precision ranging between 0.02 to 0.05mm.
- CNC robotics offers versatility. It can cover multiple tasks at the same time due to its high automation. CNC machines, on the other hand, carry out specific operations like drilling, turning, and mulling efficiently. Robotics can move along multiple paths, and this aspect is not achieved in CNC machining.
- The tools in CNC robotics are less rigid, which results in a risk of deflection when hard materials are machined. In the case of CNC machining tools, however, they are highly rigid, which makes them suitable for harder materials.
- CNC robotics offers an extensive workspace and, when required, can add additional external axes to their workpiece. On the other hand, CNC machines have specific workspaces for machining components.
- CNC machines and robots are both expensive, but the performance of the robots gives a high value for money compared to CNC machines.
Types of CNC Robots Available in Different Industries
There are various types of CNC robots, each with unique capabilities. The common ones are discussed below.
Cartesian Robots
Cartesian robots are linear robots that work on their axis, namely x, y, and z of the cartesian system. These are used because they offer highly flexible configurations and can be modified in terms of size, precision, and speed.
These robots have a high range and are large in size, which makes them suitable for heavy workpieces. These robots are used in the assembling process, material handling, pick and place, loading and unloading, screw driving and fastening, packaging, etc.
Articulated Robots
Articulated robots have rotary joints; they possess 2 to 10 axes and offer excellent freedom of motion. They are suitable for handling multiple types of pieces in varied sizes and can be used for versatile applications.
The process of material handling, assembling, arc welding, machining, loading, and packaging are the common applications.
SCARA Robots
SCARA robots have four axes and can work on high-speed and repeatable operations. These robots work like human arms but at great speed and precision.
These robots improve the productivity of the process, reduce the cost, and ensure the safety of the workers. These robots conduct the tasks of assembling, picking and placing, packaging, machining, and inspection.
Collaborative Robots
Collaborative robots are suitable for performing repeated tasks, and they can conduct multiple processes in no time with enhanced productivity.
These robots tend to perform tasks like loading, unloading, assembling, etc. They work in collaboration with the staff.
Delta Robots
Delta robots are the types of robots that are used in applications associated with high speed. These are usually attached to work areas at the top to conduct tasks like assembling, sorting, picking and placing, disassembling, packaging, and sorting.
Common Robotic Parts Used in CNC Robotics
There are different types of robotic parts that are used in CNC robotics, and some of these are as follows:
CNC Robotic Arm
A CNC robot arm is the most important part of CNC robotics machining because it helps perform operations. It is used in many industries, and it is made using materials that are high-strength, like some high-end plastics, steel, and aluminium.
End Effectors
End effectors are such devices attached to the robotic arm ends so that the robot can perform multiple tasks. These end effectors have different functional vacuums, followed by grabbers and grippers, which help to conduct different operations.
Custom Jigs and Fixtures
Robotic operations need jigs and customized fixtures to hold the workpieces. These fixtures also help to locate the workpiece in a precise way every time. They are highly cost-effective and conduct different processes during machining.
Sensors and Controllers
Robots consist of sensors and controllers. These also include PCBs, which help them perform their operations. CNC robotics can be used to manufacture these components using different shapes and sizes without the need for chemical etching.
Will CNC Robotics Replace CNC Machines?
CNC manufacturing robotics also offers versatile advantages, but it can't match the speed and precision of the CNC machines that are present in the modern world.
Robots offer high versatility, but CNC machines offer a high specialization in fabricating components of specific types of parts.
The accuracy of the CNC milling and lathe machining is commendable and cannot be matched by robots also due to their low rigidity.
Although the demand for CNC robotics is growing, they cannot replace CNC machines entirely due to some limitations. Hence, they can work in collaboration with CNC machines.
DEK - CNC Machining Services for Your Robotic Parts
Nous, à DEK are well-equipped with highly specialized and innovative CNC machines that help us manufacture robotic parts for your projects.
So, if you are looking for high-quality, precise robotic parts customized as per your requirements, get in touch with us, and we will manufacture them for you.
Conclusion
The guide above has a detailed discussion of CNC robotics and its comparison with CNC machining. As you have gone through it, you must have understood it in detail. It will help you have the components designed by having a thorough understanding of it.
Le processus de fabrication de composants par usinage nécessite une évaluation de l'usinabilité. L'usinabilité est le concept de matériaux pouvant être traités de manière pratique. Elle nécessite l'évaluation de différents facteurs lors de la sélection du matériau.
Le guide ci-dessous s'adresse à vous si vous démarrez un nouveau projet et que vous souhaitez en savoir plus sur l'usinabilité des matériaux. Alors, lisons.
Qu'est-ce que l'usinabilité d'un matériau ?
L'usinabilité des matériaux est la facilité avec laquelle un matériau peut être usiné de manière à obtenir la qualité requise pour le composant. En termes de qualité des pièces, vous devez analyser l'état de surface, la tolérance et la précision dimensionnelle.
Les matériaux hautement usinables nécessitent moins de temps et d'énergie, ce qui réduit l'usure de l'outil. Ces matériaux permettent d'obtenir des pièces dont la finition de surface est raffinée.
Comprendre les cotes d'usinabilité
Il existe de nombreux matériaux et, parmi eux, le choix du bon matériau en termes d'usinabilité peut constituer un défi pour les ingénieurs. C'est pourquoi les cotes d'usinabilité sont prises en compte lors de l'analyse des matériaux appropriés.
Les indices d'usinabilité ont une caractéristique standard dans laquelle le matériau de référence est pris en compte pour des raisons de commodité. Par exemple, la nuance de laiton C36000 a un indice d'usinabilité de 100%. Lorsque les matériaux deviennent difficiles à couper, l'indice d'usinabilité qu'ils possèdent diminue.
Comment améliorer l'usinabilité des matériaux ?
Afin d'améliorer l'usinabilité des matériaux, certains moyens peuvent être envisagés :
Additifs de matériaux
Les additifs améliorent l'usinabilité des matériaux en modifiant la structure du réseau de ces matériaux et en améliorant leurs propriétés mécaniques. Par exemple, les alliages de cuivre sont enrichis en zinc pour améliorer leur usinabilité.
Traitement thermique
Traitements thermiques Le recuit de l'aluminium et de l'acier tend à réduire leur dureté, ce qui les rend plus faciles à usiner. Il améliore la structure du grain et libère les tensions internes, ce qui rend les matériaux faciles à usiner.
Liquide de refroidissement/Lubrifiant
Les conditions de coupe peuvent être optimisées pour rendre le matériau plus facile à usiner, par exemple en utilisant des liquides de refroidissement et des lubrifiants. L'utilisation de lubrifiants tend à réduire la friction et l'usure de l'outil. De même, le liquide de refroidissement contribue à la dissipation de la chaleur et réduit les contraintes thermiques.
Optimisation des paramètres de coupe
La bonne sélection des paramètres de coupe a également un impact sur l'usinabilité des matériaux. Lorsque la vitesse et la vitesse d'avance sont élevées, l'usinabilité diminue. En revanche, lorsque l'on réduit la vitesse et l'avance, l'usinabilité diminue. la vitesse et l'avancel'usinabilité augmente.
Facteurs externes
Même si vous ne souhaitez pas changer le matériau de la pièce à usiner, vous pouvez ajuster les autres facteurs, tels que la vitesse, l'angle et les conditions de fonctionnement de l'outil de coupe. Cela permet de faciliter la découpe des matériaux difficiles à usiner.
Facteurs affectant l'usinabilité
L'usinabilité dépend de plusieurs facteurs, dont certains sont décrits ci-dessous :
Propriétés des matériaux
Les propriétés des matériaux influencent l'usinabilité dans une large mesure, et certaines de ces propriétés sont les suivantes :
Matériau Dureté
La dureté du matériau détermine l'usinabilité. Les matériaux durs sont difficiles à usiner. Ces matériaux nécessitent plus de puissance et l'outil doit exercer une force élevée, ce qui entraîne une usure rapide de l'outil.
Solidité
La ténacité est également un paramètre très important pour déterminer l'usinabilité. Les matériaux à forte ténacité sont ceux qui nécessitent une plus grande force de coupe, comme l'acier au carbone, qui n'est pas usinable.
En outre, ces matériaux produisent également beaucoup de copeaux, qui s'enchevêtrent dans l'outil, ce qui entraîne une usure de la surface des outils.
Résistance à la traction
Si la résistance à la traction du matériau est élevée, il est difficile de les usiner. Ils consomment beaucoup d'énergie et résistent à la déformation, ce qui pose des problèmes lors de l'usinage.
Propriétés thermiques
La capacité de dissipation de la chaleur du matériau détermine également son usinabilité. Certains matériaux sont très souples et ne peuvent pas supporter la chaleur, ce qui rend l'usinage difficile.
Conditions d'usinage
Le comportement du matériau lorsqu'il est coupé a également un impact sur l'usinabilité. Certains de ces facteurs sont examinés ci-dessous.
Paramètres de coupe
Les paramètres de coupe se composent de l'avance, de la profondeur de coupe et de la vitesse. Il est essentiel de les optimiser pour obtenir un meilleur usinage. Lorsque vous coupez des matériaux à grande vitesse, ils sont moins faciles à usiner. De même, la profondeur de coupe joue également un rôle important, car une profondeur élevée a un impact sur l'intégrité de la surface.
Outil de coupe
Usinage CNC a des fraises qui ont un impact sur l'usinabilité. La résistance et le tranchant de la fraise sont essentiels. L'angle de coupe améliore même la formation de copeaux et fragilise les outils.
Liquide de refroidissement et lubrifiant
L'application de lubrifiants et de réfrigérants améliore l'usinabilité des matériaux. La chaleur est dissipée et la friction est améliorée. Ils contribuent à améliorer la finition de la surface et à rendre le processus de coupe plus fluide.
État des machines-outils
L'état de l'outil détermine également l'usinabilité. Les machines plus anciennes présentent davantage de vibrations lorsqu'elles sont soumises à des charges de coupe dynamiques, ce qui rend la coupe des matériaux plus difficile.
Matériaux typiques présentant une excellente usinabilité
Les matériaux offrant une grande usinabilité sont présentés dans le tableau ci-dessous.
Matériau | Usinabilité |
Aluminium | 90-95% |
Acier | 30-40% |
Plastiques | 70-90% |
Autres métaux :
Titane Laiton de décolletage Magnésium |
20-25%
100% 50-55% |
Comment mesurer l'usinabilité des matériaux ?
Plusieurs facteurs influencent l'usinabilité des matériaux. Différentes méthodes permettent de mesurer l'usinabilité des matériaux. Des paramètres tels que la consommation d'énergie, la durée de vie de l'outil de coupe et l'état de surface contribuent à cette mesure.
- La consommation d'énergie permet d'évaluer l'usinabilité en fonction des forces nécessaires pour découper le matériau à l'aide des mesures énergétiques standard.
- La durée de vie des outils de coupe permet également d'évaluer l'usinabilité, c'est-à-dire la durée de vie de l'outil lorsqu'il coupe le matériau.
- L'usinabilité est également évaluée par la finition de la surface, qu'il y ait ou non une arête construite, car les matériaux usinables ne laissent pas cette arête.
Toutefois, il ne s'agit pas de moyens de mesure entièrement fiables. L'AISI a créé un système d'évaluation basé sur des tests de tournage. Ces notations sont exprimées sous forme de pourcentages.
Traitement efficace des pièces difficiles à usiner par DEK
DEK propose d'usiner des matériaux de différents types en s'appuyant sur son expérience et ses outils de pointe. Par conséquent, s'il existe des matériaux difficiles à usiner mais qui font partie intégrante de votre projet, contactez-nous. Nous vous aiderons à fabriquer ces composants avec une qualité, une précision et une finition de surface élevées.
Conclusion
L'usinabilité est l'un des aspects les plus cruciaux de la fabrication, quel que soit le secteur d'activité pour lequel vous avez besoin du composant. Le besoin d'usinage est essentiel pour obtenir la forme souhaitée.
Mechanical testing is used to evaluate product designs. It is also used for validation, identification, and characterization of the products. Mechanical testing allows manufacturers to ensure that they are utilizing material appropriately and that the process is safe and cost-effective.
If you want to learn more about what is mechanical testing, the guide below is for you.
What is Mechanical Testing?
Mechanical testing consists of a series of standardized tests that help determine the properties of the material. It also helps in testing whether a particular material is suitable for the given applications or not.
Mechanical testing is a very important aspect of the manufacturing process to achieve some standards set by ISO and ASTM. These tests help manufacturers determine which materials are high quality and choose the appropriate ones.
How Does It Work?
Mechanical testing processes can help determine the material properties when the load is applied to them. It is a very crucial part of the manufacturing process. The material is subjected to load, and the deformation is assessed. Different types of tests are conducted to verify the material properties.
Types of Mechanical Testing
There are different types of mechanical tests to verify the material properties, and some of these are as follows:
Tensile Testing
Tensile testing helps determine the strength of the material and assess its properties, such as yield deformation, strain, and stress. The material is subjected to a given force and is pulled from the two ends till it breaks.
This testing is done in a testing machine that works either by electric or hydraulic system. The data is recorded at different forces. The standards for tensile testing are ASTM D412, ASTM D638, ASTM E8, ISO 37, ISO 527-2, etc.
Essai de dureté
Hardness testing assesses the hardness of a material. This test is conducted on the material only and not on the final product. The different types of hardness tests are the Brinell test, Rockwell test, and Vickers test. These tests help analyze surface hardness.
These tests are conducted with indenters to create an indentation on the material’s surface. The depth and force of the indentation help collect the data for the hardness test.
Tests d'impact
Impact testing is a type of mechanical testing that analyzes the amount of high-impact load a material can take. It allows the impact loads to be applied with a high force multiple times for a longer span of time to analyze the material’s strength.
Essais de fatigue
Fatigue testing is suitable for products that undergo cyclic loading. Components with dynamic mechanical loads need this type of testing, which changes their direction and magnitude now and then.
Fatigue testing helps to consider parameters consisting of the number of cycles and their frequency followed by the types of load.
Fracture Toughness Testing
Fracture toughness testing allows manufacturers to analyze the amount of energy required to break the material that has a crack already. The manufacturers can ascertain the ability of a material to resist the fracture using an intrinsic stress factor. The standards for this type of test are ASTM E1280 and EEMUA pub. 158, BS 7448, etc.
Compressive Testing
Compressive testing determines the material’s behavior, which is subjected to loads that end up crushing them. It is a very important manufacturing part as the material has to pass through different phases. This test is compatible with a wide range of materials, including plastics, metals, and ceramics.
Essai de torsion
Torsion testing carries out an evaluation of the way a material behaves when subjected to angular stress. It helps to measure properties like durability, shear yield strength, and shear modulus. There are different types of torsion tests, and these are as follows:
- The pure torsion test involves the application of a pure torsional load.
- The axial torsion compass is a combination of axial and torsional forces.
- Proof testing consists of applying the torsional load for a given period of time.
- Failure testing consists of twisting the material until it breaks.
Creep Testing
Creep testing is a test that consists of subjecting the material to consistent stress for extended temperature, and the data is recorded. This test helps to analyze the material’s ability to deform when subjected to constant stress at a given temperature. It is suitable for materials like soldered joints, metal workings, and springs.
Résistance à la corrosion
Corrosion resistance tests are meant to determine the reaction of materials when subjected to different conditions, including saline and non-saline. These tests have different techniques, which are as follows:
- Salt spray is applied on coated and uncoated materials to consider their reaction.
- CASS exposure testing is an aggressive method that helps to test chromium and aluminum plating on materials made of steel and zinc. The components are exposed to copper-accelerated acetic acid salt spray to determine whether the material corrodes or not.
- Immersion corrosion testing involves immersing the material in an aggressive environment with moisture and determining the weight loss due to corrosion.
Essais non destructifs
Non-destructive testing is conducted without causing any damage to the material. Some of these methods are the following:
- Acoustic emission testing detects the active defects by using ultrasound waves.
- Electromagnetic testing uses electromagnetic fields to identify the defects in the material.
- Leak testing detects the cracks and leaks in the materials.
Why Should You Invest in Mechanical Testing?
The success of the manufactured components depends on the quality of the materials used. The assessment of those materials relies on mechanical testing. Hence, there are many reasons to invest in mechanical testing, and some are discussed below:
Internal Audit
The internal audit in the process of manufacturing and product design helps manufacturers assess the material and processes and ensure it meets international standards.
The internal audit can detect whether the materials used in the manufacturing process pass the tests for international standards or not. If they don’t, the manufacturer can opt for an alternative solution.
External Audit
External audit is a process in which the organization conducts the testing of the products of another organization. It helps to test the quality of the product and ensure that it adheres to international standards. The materials that do not pass through the mechanical tests fail the external audit and lead to a waste of resources and time.
Increased Costs
The use of inferior quality materials leads to wastage, and the product’s authenticity is also questionable. Moreover, the products can be over-engineered, which increases production costs. Hence, the production cost can be reduced when the right material is chosen.
Product Failure
Product failure is one of the costly consequences of not considering mechanical testing. It leads to product damage and may also lead to legal consequences. It doesn’t take place if the internal and external audits are done, but there could be a problem during auditing.
Possibility of a Future Failure
In case the product fails during the testing process, the failure analysis can help predict that it will fail in the future as well. It helps to inspect the file aid part and think about its improvement.
Why is Mechanical Testing Important for Materials?
Mechanical testing is very important to understand the way materials will work when subjected to real world stress. By evaluating the material properties like ductility, toughness, strength, and hardness, the material can be assumed to adhere to specific standards.
Industries like automotive, aerospace, and construction are sensitive, and there is no margin for using inferior quality material.
Mechanical testing not only helps ensure the reliability of the product but also allows engineers to create product designs by analyzing their lifespan. The costly failures are prevented, and the performance of the parts is optimized.
Is Industrial Mechanical Testing Important?
Structural integrity testing is very important to ensure the cost-effectiveness and safety of the process. Fabricants need mechanical testing to ensure the product’s quality, their reputation is preserved, and their production cost is reduced. The material dealers also adhere strictly to international standards so that their credibility is maintained.
The customers are also assured and relieved that the materials have undergone mechanical testing, which will prevent the risk of failure and ensure safety.
Ensuring Quality of Your Parts: DEK Can Help
The quality of components is crucial in every industry. If you are also looking to manufacture custom components that have passed mechanical testing, you can contact DEK. We always conduct mechanical tests for all the components we manufacture and ensure their materials are high quality.
Conclusion
Mechanical tests are important aspect of manufacturing. It is crucial to have a detailed understanding when it comes to conducting these tests. The information from this guide will help you make the most of the testing processes for your projects.
FAQ
Which is the most used mechanical test?
Tensile testing is a very common method. It allows the manufacturers to have an idea of the strain and stress that the material can handle.
What is material testing, and what is its role in the industry?
Material testing helps to differentiate between real and fake materials by testing their properties before using them in your products.
When should mechanical testing be done?
Mechanical testing is carried out to test the material quality and properties in a specific environment.