The manufacturing process of components in different industries doesn't just start immediately. It requires the prototypes to be manufactured first.
Prototypes are a crucial part of the development stage when it comes to manufacturing metal prototypes. Some of the aspects to consider are featured in the guide below. So, let's read on.
What is a Metal Prototype?
Metal prototyping consists of creating a sketch of the metal product, which is done before starting the production. The designers test these models and, if required, update them.
Metal prototyping is a crucial process in most of the industries and it offers various advantages.
When Would You Choose Metal for Prototyping
Metal prototypes are created to check their functionality and performance. It is important to align them with the process of production.
Metal prototyping supports cost-efficiency and smooth development which helps to transform metal prototypes in the actual part.
Normally, plastics are chosen for prototyping but it is challenging to transform plastics into metals, and hence, converting metal models into metal parts is easier.
Ventajas de los prototipos metálicos
Metal prototypes have multiple benefits, and some of these are as follows:
- Metal prototypes have a high strength. Metals like stainless steel have a high hardness, which ensures high yield strength. These prototypes are durable and can withstand multiple conditions.
- Metals have high melting points, and they do not degrade over a period of time.
- Metal is cheaper compared to plastic when applied in different applications.
- Metal parts are aesthetically appealing and also compatible with finishing methods.
- Metal prototypes offer versatility; they can be subjected to a wide range of processes and, hence, it is compatible with multiple applications.
Common Metals Used in Rapid Prototyping
Creación rápida de prototipos uses two of the most common metals, which are aluminum and steel. Other than these metals, other metals like copper, chrome, magnesium, and copper are also used.
Titanium is a metal that offers high strength and density, as well as a high melting point. Aluminum is also lightweight and offers high machinability. It even has multiple advantages which include scalability, corrosion resistance, and high electrical and thermal conductivity.
Magnesium alloys are also used for producing metal prototypes, and they can be used in applications that need low weight density and high thermal conductivity.
Steps of Making Metal Prototypes
The steps for making metal prototypes are the following:
- The first stage is the stage of designing; a sketch of the model is created either on paper or in the software. The CAD software is used for creating the visualization of prototypes.
- Select the metals you want to have the prototypes manufactured for, you have to choose depending on the application and properties you need.
- Choose the manufacturing process based on the lead time, cost, and the rolling method.
- Manufacture prototype through the selected process of manufacturing.
- Now, test and evaluate if it meets the required specifications and update accordingly.
How Do You Make a Metal Prototype?
There are different fabrication processes for making metal prototypes, and some of these processes are as follows:
Mecanizado CNC
Mecanizado CNC uses the process of CNC machines for manufacturing metal prototypes.
CNC machines use a subtractive process of manufacturing, removing metal, and then achieving the required shapes of the component. CNC machining is compatible with metals like aluminum, zinc, steel, and magnesium.
Impresión 3D
Impresión 3D is an efficient method for manufacturing metal prototypes. The process of 3D printing is an additive process that involves manufacturing components layer by layer.
It uses different technologies like DMLS and SLM. Using laser beams, they can create layers of parts using different metal powders. CAD design inputs to attain the required designs and helps achieve complex shapes and detailed features.
Fabricación de chapas metálicas
Sheet metal prototyping is used for manufacturing parts using different processes. The process involves cutting, deforming, and assembling the sheet metal parts.
The process uses sheet metal plates on a flatbed to cut the shapes and achieve the required parts.
The process of sheet metal fabrication involves laser cutting, punching, bending, and welding. It can help create prototypes consisting of brackets, enclosures, and other parts.
Fundición de metales
The process of metal casting is pouring molten metal into the molds, which have cavities, and creating the required shapes. Once the liquid metal material is solidified, the desired prototype is achieved. It is an efficient method of producing components of different shapes.
Extrusión de aluminio
Aluminum extrusion allows the creation of properties with the dies, which can produce parts in a longer shape. These parts are cut to the required length after being extruded.
Aluminum extrusion is mostly opted for high-volume production but is also used for creating metal prototypes. Parts like brackets, joints, and metal bars are also manufactured.
Considerations for Making Metal Prototypes
When making metal prototipos, some of the considerations are as follows:
Calidad
The quality of the metal prototype is compared with the final production, and hence, it is important to ensure that the quality of the prototype is up to the mark. It offers durability and ensures the desired surface finish.
Propósito
The purpose of metal prototypes is based on the product development stages; every stage has a specific functional requirement and desired features. It determines the prototype quality and impacts the function of the prototypes as well.
Complejidad de las piezas
The features of the prototype and its design complexity impact the selection of the process. Every process offers a different type of complexity. Impresión 3D offers a suitable process for complex components and CNC machining for parts with tight tolerance.
Cantidad
The prototype parts you require must be considered, too, when selecting the method for fabrication. Some processes are meant for less volume, and some for high volume.
Cost/Budget
When choosing the prototyping process for metal parts, make sure to consider the time and money that is spent on the manufacturing. Select the metal prototype process based on the budget you have.
Applications of Metal Prototype
Metal prototypes have various applications, and some of these are as follows:
Functional Testing: Metal prototypes are suitable for testing the durability and mechanical properties of the parts by subjecting them to real-world applications.
Structural Testing: Metal prototypes are also evaluated by subjecting them to heavy loads to check their load-bearing capacity.
Tooling: Prototypes for tools and molds are also manufactured to test them.
Conclusión
Understanding everything about metal prototyping is very important so that you can achieve the required components with no defects when you head to the final production.
Nosotros en DEK offer you the opportunity to have metal prototypes created with complex shapes and features on an affordable budget. So, get in touch with us to have your hands on these prototypes.
Preguntas frecuentes
What are the methods for manufacturing metal prototypes?
The different methods for metal prototype manufacturing are CNC machining, 3D printing, sheet metal fabrication, and aluminum extrusion.
What is the purpose of metal prototyping?
The purpose of metal prototyping is to create models of the components that are to be used in different applications. Testing these prototypes helps to make improvements.
What materials are suitable for metal prototyping?
The metals suitable for prototyping metal parts are aluminum, titanium, copper, and stainless steel.
Los metales son versátiles y, por tanto, se utilizan en diversas aplicaciones. Hay distintos tipos de metales, como los férricos y los no férricos.
La guía que figura a continuación ofrece una visión detallada de los distintos tipos de metales no férreos. Así pues, si desea conocer estos metales, el artículo que figura a continuación los explora.
¿Qué es un metal no férreo?
Los metales no férreos son metales que no contienen hierro ni fierro. Por lo tanto, todos estos metales puros se conocen como no ferrosos, excepto el hierro.
Estos metales son caros, pero ofrecen excelentes propiedades como resistencia a la corrosión y el óxido, facilidad de mecanizado y naturaleza no magnética.
Los metales no ferrosos son reciclables y también consumen menos energía cuando se reciclan. Las excelentes propiedades que poseen los metales no ferrosos hacen que los fabricantes ignoren su coste.
Hay muchos tipos de metales preciosos y no preciosos que entran en la categoría de metales no férreos.
Historia de los metales no ferrosos
Metales no ferrosos son aquellos metales que fueron los primeros en ser utilizados por el ser humano.
Debido a que no se corroen, fueron adoptados por los humanos, y el primer material no ferroso descubierto fue el cobre. Los humanos aprendieron las técnicas de moldeado y forjado utilizando el cobre.
Después de la Edad del Cobre, el cobre se aleó con estaño para producir bronce. Los humanos utilizaron metales no ferrosos durante mucho tiempo y, en el año 5000 a.C., idearon nuevos métodos para fabricar bronce.
Aleaban el cobre fundiéndolo y mezclándolo con metales como el arsénico y el estaño. Aquí terminó la Edad de Piedra y comenzó la Edad de Bronce.
Cuando se descubrieron también el bronce, la plata y el oro, se empezaron a fabricar adornos con ellos en lugar de piedra y madera. Hoy en día, los metales no férreos se utilizan para motores de vehículos, cuberterías, adornos y muchas cosas más.
Proceso de producción de metales no férreos
Los metales no férreos se procesan de tres formas muy populares: la fundición a la cera perdida, el proceso de metal en frío y el proceso de fundición en arena.
Los metales no férreos son conocidos por su alta conductividad, su resistencia a la corrosión y el óxido y sus propiedades no magnéticas. Son adecuados para fabricar componentes metálicos e incluso piezas estructurales.
Estos metales se refinan mediante electrólisis y, al hacer la fundición, los fabricantes los añaden al hierro para crear una fundición con propiedades mejoradas.
Tipos de metales no férreos y sus propiedades únicas
A continuación se describen los distintos tipos de metales no férreos y sus propiedades.
Aluminio
Es un tipo de metal no férreo muy importante, ligero y muy fácil de mecanizar. Se utiliza como metal base en muchas aleaciones e incluso es muy rentable.
Aluminio se utiliza en muchas aplicaciones, como aviones, automóviles, cuadros de bicicleta, latas de bebidas y yates.
Titanio
Titanio tiene una resistencia sin fisuras y no se corroe. El titanio es muy resistente y se utiliza en aplicaciones aeroespaciales, deportivas, médicas y agrícolas.
Cobre
Cobre tiene aleaciones como el latón y el bronce y se utiliza en muchas aplicaciones. Se emplea en intercambiadores de calor y recipientes calefactores por su alta conductividad térmica. También se emplea para fabricar alambres, cubiertas y utensilios de cocina.
Bronce
Bronce es un material maleable y ligero que presenta una gran resistencia a la corrosión. También ofrece una excelente resistencia y puede doblarse y cortarse con gran facilidad. El bronce se utiliza en revestimientos de casas, canalones, electrónica y señalización exterior.
Latón
Latón es una aleación de zinc y cobre y está compuesto por otros metales como el níquel y el estaño. Es muy duradero y ofrece una gran conectividad térmica y eléctrica. Se utiliza en campanas, bocinas, utensilios, cojinetes, piezas de fontanería y válvulas.
Zinc
Aleaciones de zinc con cobre para la conformación del latón y ofrece una excelente resistencia a la corrosión.
Se utiliza en muchas aplicaciones, como barandillas, puentes colgantes, intercambiadores de calor, tejados metálicos y muchas más. Ayuda a dispersar el calor durante el proceso de fabricación del caucho.
Níquel
El níquel es un metal plateado que ofrece una excelente tolerancia a la temperatura, tenacidad y resistencia a la corrosión. Puede adquirir excelentes características cuando se alea con otros elementos. Se utiliza en aviones, equipos marinos y automóviles.
Plomo
El plomo es uno de los metales no férreos más pesados; es tóxico y tiene riesgos para la salud. Es pesado y puede optarse por piezas resistentes a la corrosión. Es denso y dúctil, pero ofrece escasa conductividad eléctrica.
Se utiliza en la fabricación de cables eléctricos, cinturones de lastre, depósitos de ácido y baterías.
Plata
La plata es un metal blando y de aspecto brillante. Ofrece una gran maleabilidad y conductividad. Se utiliza en muchas industrias y se opta por ella para fabricar cojinetes de motor, joyas, vajillas y otros tipos de piezas.
Oro
El oro es un metal no ferroso que posee una excelente maleabilidad. Ofrece resistencia a la corrosión y tiene una gran ductilidad. No reacciona con otras sustancias químicas. Se utiliza en joyería, como pulseras, cadenas y anillos.
Tabla de propiedades y aplicaciones de los metales no férreos
Metales no ferrosos | Conductividad eléctrica | Conductividad térmica | Resistencia a la corrosión | Fuerza | Aplicaciones |
Aluminio | Moderado | Alta | Moderado | Moderado | Automóviles, aviones, latas |
Titanio | Bajo | Moderado | Alta | Alta | Medicina, aeroespacial y agricultura |
Cobre | Muy alta | Alta | Moderado | Bajo | Cables, fontanería, utensilios de cocina |
Bronce | Moderado | Moderado | Alta | Moderado | Canalones. esculturas |
Latón | Alta | Alta | Moderado | Moderado | Válvulas, campanas, piezas de fontanería |
Zinc | Bajo | Moderado | Alta | Bajo | Puentes colgantes, barandillas |
Níquel | Moderado | Moderado | Alta | Alta | Aplicaciones marinas, automóvil |
Plomo | Muy bajo | Bajo | Moderado | Bajo | Baterías, depósitos de ácido |
Plata | Muy alta | Muy alta | Bajo | Bajo | Vajilla, Joyería |
Oro | Alta | Alta | Muy alta | Bajo | Joyería, Conectores eléctricos |
Diferencias entre metales ferrosos y no ferrosos
Metales ferrosos tienen una gran cantidad de hierro, mientras que los metales no férreos no tienen hierro. Los fabricantes eligen los metales ferrosos por su resistencia y durabilidad, y suelen ser seleccionados por la industria de la construcción.
Los metales no férreos, en cambio, son resistentes a la corrosión y maleables; por eso se opta por ellos para fabricar canalones, tejados, joyas, etc.
Aplicaciones habituales de los metales no férreos
Las aplicaciones habituales de los metales no férreos son las siguientes:
- Los tubos de cobre se utilizan en fontanería para calefacción y suministro de agua.
- El cableado eléctrico se forma utilizando cobre, ya que ofrece una alta conductividad eléctrica.
- Los materiales para tejados también son no ferrosos, ya que ofrecen durabilidad y resistencia a la corrosión.
- Se opta por el aluminio en la industria aeroespacial por su resistencia y peso.
Conclusión
Los metales no ferrosos están por todas partes y todos los componentes están hechos de ellos. Si busca componentes no ferrosos precisos y de alta calidad, puede ponerse en contacto con nosotros en DEK.
Ofrecemos procesos de fabricación especializados utilizando los mejores metales no ferrosos para sus proyectos.
Injection molding doesn't need any introduction as it has been catering to many industries for years. However, under the head of injection molding comes two very important terms: insert molding and overmolding.
If you are planning to start a new project and want to learn the difference between insert molding vs overmolding, the guide below is for you. So, let's read.
What is Insert Molding?
Insert molding is a process that assembles the plastic component with a metal insert. The plastic is injected into the mold. As soon as the plastic solidifies, the component and insert are assembled.
Insert molding is mostly used to create metal-attached plastic components. This process is commonly observed when creating fasteners so that they can help assist with assembling different products.
Benefits of Insert Molding
Insert molding offers various benefits, and the most important ones are discussed below:
- Injection molding is known for mass production. Hence, it offers the economics of scale when it comes to choosing the injection molding process.
- One can manufacture these components at a low cost. Moreover, the assembling process also simplifies, and the need for CNC machined components is eliminated, helping to save.
- The combination of metal and plastic materials enhances the performance of the components. The company has the benefits of both: the metal part allows the component to be made strong and stiff, and the plastic part helps reduce weight.
Limitations of Insert Molding
Insert molding has some limitations along with advantages, and these are as follows:
- Insert molding has a two-step manufacturing process; the first step requires manufacturing metal components and then the injection molding process for assembly. It increases the hassle of the process.
- The complexity of the component also increases, especially when the custom metal part is manufactured and hence the integration gets complex.
What is Overmolding?
Overmolding is a type of injection molding, but in this process, the molding takes place over another component, which is also made using moldeo por inyección.
The process combines different types of plastics to achieve functionality or aesthetics. It is used in screwdrivers for making their handles, toothbrushes or power drills.
Benefits of Overmolding
The benefits of overmolding are as follows:
- Overmolding allows designers to create components that have multiple materials, which help add properties and visual complexity.
- It doesn't require any adhesive to combine the materials because the molten materials are fused in the other part, which reduces cost and enhances durability.
- Overmolding helps mold soft seals in the components, and the seal forms a groove in the part where the o-ring can be installed.
Limitations of Overmolding
Some of the limitations of overmolding are as follows:
- Overmolded components are manufactured in two steps, which increases the manufacturing time and is expensive. It needs two tools or two-shot molds, which adds to the cost.
- The process of bonding two different materials with one another in an injection mold run leads to the chance of delamination.
- In cases where the appropriate temperatures are not maintained, this leads to a problem with bonding and durability.
Differences Between Insert Molding vs Overmolding
The section below highlights the differences between overmolding and insert molding in detail.
Proceso
Insert molding consists of injecting just one shot of molten plastic, whereas overmolding requires two shots of molten plastic to be inserted.
Velocidad
Insert molding takes time to mold another layer because the two pieces are manufactured separately. Hence, compared to overmolding, insert molding takes more time.
Overmolding is quick. It doesn't need two pieces to be manufactured separately, and direct molding takes place over the first product to create the second one.
Selección de materiales
Overmolding doesn't need adhesive, and the selection of the material needs to be adequate enough to create a strong component.
Similarly, insert molding also doesn't need any additional fasteners as the metal components are already present in the mold.
Coste
Insert molding can help reduce the cost of assembling and can create thousands of parts in a single day. However, overmolding is expensive as it requires double steps.
Common Applications of Insert Molding vs Overmolding
There are many applications of insert molding and overmolding as they cater to versatile industries, and some of these are discussed below:
Automóvil
In the automobile sector, the two processes allow the components to have a combination of plastic and metal parts. The process of manufacturing batteries, dash panels, handles, and knobs all use insert molding.
Cosmetics
Most of the equipment used in the cosmetics industry is made using overmolding and insert molding, as they help in enhancing the overall look of the products.
These methods help to create special surfaces of components composed of different colors. Some of the cosmetic products are makeup brushes, bottles of perfumes and even compact powders.
Electrónica
The placement of the rubber on the electrical wire is attained through insert molding. It creates coats on the electronic products and makes handling them safer.
How to Choose Between Insert Molding vs Overmolding for Your Project
When choosing between insert molding o sobremoldeo for your projects, some of the considerations that you must keep in mind are highlighted here. It will help you make the relevant decisions.
Overmolding is suitable when thermoplastics and rubber are used, and multiple colored layers are used on the components. Moreover, the components do not need to be disassembled later on.
Insert molding is suitable where a prefabricated substrate is used, and the metals or computerized parts are contained in the substrate.
Conclusión
Understanding the differences between overmolding and insert molding is very important to make a relevant decision between the two processes and their selection. Hence, the guide above must have helped you in this regard.
If you are looking forward to having hands on the components made through the two processes, DEK can assist you.
Preguntas frecuentes
What is TPE overmolding?
TPE overmolding is a process of injecting TPE into an existing plastic part.
Is insert molding the same as 2K injection molding?
Insert molding is composed of creating a secondary component on a substrate, 2K molding is a double shot injection molding that injects different materials in a mold with multiple chambers.
What is two-shot injection molding?
The shot injection molding process involves molding multiple parts using a single tool.
What are inserts in injection molding?
The inserts are metal parts that are used for manufacturing components by having molten plastic with it using injection molding.
Machined components require secondary processes that improve their surface finishing and enhance their functionality. There are different types of surface finishing processes and among them, e-coating is also widely adopted.
The guide below tells everything about what e-coating is, how it is applied, and what benefits it offers. So, let's read below.
What is E-Coating?
E-coating is a surface finishing process in which the components are submerged in a bath of a water-based solution containing epoxy or paint. The layer of paint sticks to the surface until the desired finished component is attained.
How E-coating Works?
The process of e-coating has several steps, and each step is discussed below.
Limpieza
The components to be coated are first cleaned using degreasers so that any dirt, impurities, or oil can be removed, improving the adhesion of the coating.
Rinsing
After cleaning the component, make sure to rinse it so that the residues from the component are removed.
Tratamiento de superficies
The surface of the component is treated with either chromate or phosphate coating, which enhances the adhesion and makes it resistant to corrosion. It is basically a process where the component is stabilized for an improved coating impact.
Submerging in Solution
The component is then rinsed again using deionized water and then immersed in a water-based solution bath that has the coating.
Electrocoating
Electric current is then applied to the components, which creates attraction between the particles and deposits the coating on the surface.
Curing and Cooling
Once the coating is carried out, the components are kept at a high temperature for curing so that the coating is hardened and sticks perfectly to the surface. Once cooled, the components are ready for use.
Characteristics of E-Coating
E-coating has some characteristics that make it suitable for applications, and these are as follows:
- It offers uniform coverage and even covers areas that are hard to reach.
- It ensures protection against corrosion.
- The e-coated component is hardened and, hence, resistant to impact, wear, and chipping.
- The water-based solutions used for e-coating ensure environmental friendliness.
Advantages and Disadvantages of E-Coating
E-coating has benefits as well as limitations, and these are highlighted in the section below:
Ventajas
- The process of e-coating is cost-effective. If high-volume components are coated, it offers economies of scale.
- It is a very simple process and can be carried out very quickly.
- It creates a thin layer on the components, which ensures precision.
- Due to the electric discharge, the particles are attached to the surface evenly and create a uniform coat.
- The components that have been treated with e-coating are easy to clean and maintain.
- It is an environmentally friendly process and can be subjected to recycling.
Desventajas
- Since e-coating is mostly opted for large-scale components, it may not be available for small-scale projects.
- If thick coating is required, the process of e-coating is not suitable.
- It offers low stability and UV resistance.
Which Materials are Suitable for E-Coating?
The materials that are suitable for e-coating are as follows:
Acero: Steel is a very commonly used material in most applications, and every type of steel can be e-coated. The process creates a barrier of protection, and the components can be kept away from corrosion and rust.
Aluminio: Aluminio is also a very suitable metal which helps with e-coating. It is lightweight so it is used in automobiles, electronics, and aerospace. E-coating these aluminum components ensures resistance against weathering and also enhances the structural integrity of the components.
Zinc: Zinc components are also coated using an e-coating process, which provides a layer of protection against corrosion.
Cast iron: The components made using cast iron are used in applications that need high strength. It helps protect the components from moisture and chemicals, ensuring their life.
Applications of Using E-coating
The applications of e-coating can be observed in various industries, and some of these are as follows:
Automóvil: E-coating protects the sheet of steel that is used in the doors and fenders of a car from corroding.
Electrónica: E-coating protects the circuit boards on electric applications from oxidation and contamination.
Marina: Steel and aluminum components used in yachts and boats are protected from corrosion.
Aeroespacial: E-coating protects the aircrafts from wearing off and these components consist of hinges, doors, and landing gear.
Things to Consider Before E-coating
Some of the considerations which are important to be taken into account while opting for e-coating are as follows:
- The material chosen for e-coating should be compatible with the process.
- Surface preparation is a prerequisite for the e-coating process to ensure adhesion.
- The thickness of the coating must be determined based on the specifications of the components.
- The components that are subjected to e-coating should have high electrical conductivity to ensure the success of electrocoating.
E-Coating vs. Powder Coating
E-coating and powder coating are processes opted for acabado superficial of the components. However, e-coating offers an ultra-thin, uniform coating and helps to cater to components that have intricate shapes.
Meanwhile, recubrimiento en polvo has the ability to offer multi-colored coating and texture. It is suitable for multiple applications. It is even suitable for outdoor applications as it offers protection against UV rays.
Conclusión
E-coating is a versatile process widely used in different industries. It enhances the surface finish and performance of a component.
If you are looking to have your components finished through e-coating, DEK can be your go-to choice. We have an expert team overseeing the process to ensure a smooth finish and durable results.
Los procesos de mecanizado se utilizan para fabricar componentes en muchas industrias y aplicaciones. Existen varios tipos de procesos de mecanizado, y cada uno tiene una finalidad específica.
El mandrinado y el torneado son dos procesos de mecanizado muy comunes que se eligen por su exactitud y precisión.
Si quieres conocer sus diferencias, en la siguiente guía encontrarás una comparativa entre aburrido y giratorio, así que vamos a leer.
¿Qué es el mandrinado CNC?
El mandrinado CNC es un proceso de mecanizado que amplía los orificios pretaladrados con gran precisión. Elimina material del orificio y ayuda a conseguir el acabado superficial y el diámetro requeridos. El proceso de mandrinado CNC trabaja en el orificio interior y se utiliza en la industria aeroespacial, automovilística y otras industrias en las que se requiere una tolerancia ajustada.
Cómo funciona el aburrimiento
En el mandrinado CNC gira una herramienta de corte que consiste en una barra de mandrinar y se inserta en el orificio pretaladrado presente en la pieza de trabajo. La barra de mandrinar se mueve siguiendo las instrucciones de la máquina.
La máquina CNC encaja la barra de mandrinar en el orificio y, a medida que gira, va extrayendo el material del componente. Los parámetros de corte pueden ajustarse para mayor precisión, como la velocidad y el avance.
Ventajas e inconvenientes del mandrinado CNC
Los pros y los contras del mandrinado CNC son los siguientes:
Pros
- El mandrinado CNC es un proceso de gran precisión que puede acabar el orificio con unas dimensiones y un acabado superficial exactos.
- Se trata de un proceso automatizado y adecuado para operaciones repetibles con un mínimo de posibilidades de error.
- El mandrinado CNC es compatible con distintos materiales y puede crear fácilmente orificios de diferentes tamaños.
- Ayuda a crear agujeros profundos con precisión.
- El acabado de la superficie interior del orificio mejora gracias a su alto rendimiento.
Contras
- Una mandrinadora CNC es cara y no es adecuada para la producción a pequeña escala.
- Es lento en comparación con el taladrado y requiere mucho tiempo cuando se extrae una gran cantidad de material.
- No puede taladrar un agujero; necesita agujeros pretaladrados, que remata y amplía.
¿Qué es el torneado CNC?
El torneado CNC es un proceso de mecanizado en el que la herramienta de corte elimina material de un componente que gira.
Crea piezas cilíndricas y está controlada por una máquina CNC automatizada. Ayuda a garantizar resultados uniformes y precisos y puede fabricar poleas, ejes y otros componentes.
Cómo funciona el giro
El torneado CNC hace girar la pieza sobre un eje fijo y dispone de una herramienta de corte de un solo punto que corta el material. La pieza de trabajo se monta en el husillo del Torno CNCy la máquina hace girar la pieza a gran velocidad.
La herramienta de corte está fija y, al girar la pieza, corta el material y ayuda a conseguir la forma deseada. Tras el proceso de torneado CNC, pueden ser necesarias operaciones de acabado secundarias.
Ventajas e inconvenientes del torneado CNC
Los pros y los contras del torneado CNC son los siguientes:
Pros
- El torneado CNC es un proceso de gran precisión que puede crear dimensiones y acabados superficiales uniformes.
- El proceso de torneado CNC está automatizado, lo que reduce el tiempo de producción y mejora la eficacia.
- Es muy versátil y puede trabajar con metales, plásticos e incluso materiales compuestos.
- Puede crear componentes con formas y contornos complejos.
- El mecanizado CNC garantiza que la intervención humana sea mínima y que también se reduzca el riesgo de errores.
Contras
- Los tornos CNC requieren una inversión inicial elevada. Si desea producir un volumen bajo de piezas, puede resultar caro.
- Las herramientas de corte del torneado CNC requieren recambios, ya que se desgastan al trabajar con materiales duros.
- El torneado CNC crea componentes que son redondos, y no se pueden fabricar formas no cilíndricas.
- Genera muchos residuos en comparación con otros procesos de mecanizado CNC.
Diferencia entre mandrinado y torneado
Las diferencias entre el mandrinado y el torneado se basan en su finalidad y se destacan a continuación en detalle:
Tamaño de procesamiento
En el proceso de torneado CNC, existen diferentes tamaños de productos e incluso dispone de múltiples útiles para sujetar la pieza. La herramienta de torneado se desplaza de dos formas, en línea recta o en forma de curva, para que se alcance el tamaño deseado.
El mandrinado CNC, por su parte, se elige sobre todo para componentes de pequeño tamaño y, por tanto, tiene dificultades para ofrecer precisión con las piezas grandes. El proceso de mandrinado CNC también cuenta con mesas de trabajo de tamaño reducido.
Orientación de la pieza
El torneado CNC hace girar la pieza alrededor de su eje y la herramienta de corte se desplaza paralelamente al eje. Es un proceso que crea formas cilíndricas. El proceso de mandrinado implica una estación de la pieza de trabajo, y la herramienta de corte gira a lo largo de su eje.
Retirada de material
La diferencia entre torneado CNC y mandrinado CNC se hace más visible cuando se trata de eliminar material. El torneado CNC elimina el material desde el exterior de la pieza. En cambio, el mandrinado CNC lo elimina desde el interior.
Tipo de máquina
El torneado CNC se realiza mediante un torno, que es el punto donde gira la pieza. Mandrinado CNCpor el contrario, se realiza horizontal o verticalmente a través de centros de mecanizado en los que la pieza permanece inmóvil y la herramienta de corte gira.
Aplicación industrial
Torneado CNC se utiliza en la fabricación de componentes cilíndricos o piezas con características cónicas. Se utiliza con seguridad en las industrias aeroespacial, automovilística y manufacturera.
El mandrinado CNC, por su parte, se opta en una industria en la que la precisión de los orificios internos de los componentes es importante. Se utiliza en la industria del petróleo y el gas y en la automoción para crear cavidades internas precisas.
Tipos de herramientas utilizadas
Los distintos tipos de herramientas utilizados en el mandrinado y el torneado son los siguientes:
Herramientas de mandrinar
Barra de mandrinar de un punto: Es una barra de mandrinar que tiene un solo filo de corte y se utiliza para agrandar los orificios internos y conseguir un acabado superficial fino.
Cabezal de mandrinar ajustable: El cabezal de mandrinar ajustable es una herramienta que ayuda al ajuste de precisión, y con él se puede modificar el diámetro del orificio.
Barras de mandrinar de doble corte: Se trata de barras de mandrinar cortantes que tienen dos filos de corte y pueden ayudar a crear orificios con diámetros mayores y mejorar la velocidad de arranque de material.
Herramientas de torneado
Herramienta de roscado: Estas herramientas se utilizan para cortar las roscas de los tornillos y ofrecen roscas precisas.
Herramienta de separación: Es una herramienta que ayuda a cortar un componente acabado de la pieza de trabajo y también tiene una cuchilla estrecha que separa el componente del bloque de materiales.
Herramienta de ranurado: La herramienta de ranurado ayuda a cortar canales en la superficie de la pieza, y normalmente se prefieren las juntas tóricas.
Herramienta de conformado: La herramienta de conformado opta por el mecanizado de formas de geometría compleja en las piezas.
¿Cuándo utilizar el mandrinado o el torneado?
A la hora de elegir entre mandrinar o tornear y qué utilizar de estos procesos de mecanizado, esta sección le ayudará.
Tipo de material
El mandrinado es un proceso adecuado para materiales duros como el hierro fundido y el acero. El proceso de torneado es versátil y puede trabajar tanto con materiales duros como blandos.
Geometría de la pieza
El mandrinado es un proceso adecuado para el mecanizado interno, como la ampliación y el acabado de los orificios previamente perforados. El torneado, por su parte, es adecuado para dar forma al diámetro exterior de componentes que tienen forma cilíndrica.
Acabado y precisión deseados
El mandrinado ofrece una gran precisión y el acabado superficial es excelente para los orificios internos. Por lo tanto, se adopta ampliamente para aplicaciones que necesitan tolerancias estrechas.
El torneado, por su parte, ofrece una gran precisión para las superficies externas. Puede ayudar a conseguir un acabado superficial moderado y requiere un procesamiento secundario.
Velocidad frente a precisión
El mandrinado es un proceso lento, pero está más controlado y ofrece precisión para los diámetros internos de los componentes. El torneado, por su parte, ayuda a eliminar el material de la pieza exterior más rápidamente, pero también puede ofrecer precisión.
Conclusión
A la hora de comparar el mandrinado y el torneado, ambos procesos tienen sus pros y sus contras. Sin embargo, pueden elegirse en función de sus propias necesidades y de si necesita acabar la parte interior del componente o las características exteriores.
Si desea ayuda con los procesos para sus componentes personalizados, DEK puede ser su solución.
The robotics industry is leading as the most prominent one these days because of the advancement it offers. However, when it comes to manufacturing robotics components, versatile materials are used.
Some of these main materials used in robotics are discussed in the guide below.
Metals and Alloys
The different types of metals and alloys used for manufacturing robotic components are as follows:
Acero inoxidable
Acero inoxidable is used in robotics due to its properties. It offers durability, and it is suitable for use in harsh conditions. The material ensures corrosion and temperature resistance and can be suitable for machining as well.
Components like gears, frames, and motor parts used in robotic systems are manufactured using stainless steel.
Aluminio
Aluminio is used in many industries because of the light weight it possesses. It also offers high resistance against heat and is weldable. Hence, robotic components can be manufactured using an enhanced surface finish and corrosion resistance.
The components for robots manufactured using aluminum are wheels, bearings, and enclosures.
Titanio
Titanio is used in robotics because it has a high melting point and is biologically inert. It even offers corrosion resistance. However, it is very expensive and requires specialized equipment for welding and casting.
Hence, it is only used for lightweight and strength-oriented components.
Copper, Brass, and Bronze
Cobre and brass are used in robotic systems because they offer excellent electrical conductivity and resistance against corrosion.
Copper can be chosen for wiring, and brass can be chosen for mechanical parts. Bronze is selected for low friction properties and hence can be a stable material for harsh environments.
Plásticos y polímeros
The different types of plastics and polymers commonly used in robotics are as follows:
Acetal
Acetal is a lightweight plastic that has excellent dimensional stability and low friction. It is used in robotics to manufacture components like casing, frames, and housings.
ABS Plastic
ABS plastic is used in robotics for flexibility, strength, and mold capability. It is used for manufacturing structural components which do not add weight to the robotic applications. The components manufactured are enclosures, housings, and other components.
Nylon
Nylon is a material offering versatility due to its excellent strength and wear resistance. It is used for components of the robots that move like bearings and gears. It has low friction and is also known for self-lubricating properties.
Polietileno
Polietileno has high impact resistance and chemical inertness.it is also flexible and lightweight hence opted for sliders and bushings. It also resists chemicals and moisture and can be used in moisture-oriented environments.
Materiales compuestos
Robotic components are also made using different types of composites, and some of them are as follows:
Kevlar
Kevlar is a synthetic fiber, and it offers a layer of protection that helps the robots deal with different environmental conditions like extreme heat, cold, and pressure. Kevlar is mostly used to cover the robotic arm.
Fiberglass and Carbon Fiber
Fiberglass and carbon fiber are chosen for their high strength. These materials are mostly used for manufacturing insulation, structural panels and housings for robots.
They help with the high performance of the components to enhance the durability and strength of the robots. It is also a lightweight material.
Filled Plastics
Filled plastics are polymer materials that have fillers like carbon fiber or glass fibers so that the mechanical properties can be enhanced. These materials can make the robotic components strong.
They also enhance dimensional stability and heat resistance. They are suitable for housings, robotic arms, and gears.
Elastomeric Materials
The elastomeric materials usually used on robotic components consist of rubber.
Goma
Rubber is a very important material used in robotics as it is flexible and offers elasticity. Rubber also has the ability to absorb vibrations and shocks and hence is used in wheels, grips, and gaskets.
Unique/ Innovative materials
Some unique materials used for manufacturing robotic parts are as follows:
PCL
Polycaprolactone is a polyester that has a low melting point and is biodegradable. It is used in manufacturing custom components, which consist of sensors, robotics, and some fixtures. They can opt for such components that require reshaping at low temperatures.
Bioplastics
Bioplastics are environment-friendly materials that are obtained from sources like sugarcane, corn scratch, and potato scratch.
They are used in robotics because of their environmental friendliness. They can opt for components like housings, panels, and structural components.
Conclusión
When it comes to manufacturing different types of robotic components using versatile materials, we at DEK offer you a variety of options. We will discuss your requirements and then suggest the material suitable for your robotic component.
Metalloids are highly common elements found in the periodic table between metals and non-metals. These materials are used in many applications and have unique characteristics.
If you are planning to use them in your applications and want to learn more about the properties of metalloids, the guide below can help you. So, let's read.
What are Metalloids?
Metalloids are defined as chemical elements that have chemical as well as physical properties somewhere between metal and non-metals.
There are different types of metalloids with unique characteristics. The metalloids are in the p-block of a periodic table and are present between the metals and non-metals.
What are the Typical Elements of Metalloids?
The different elements which fall under the category of metalloids are as follows:
Boron (B)
Boron is a metalloid that has an atomic number of 5, and it is used in chemical compounds widely. Boron has a crystalline form and a black color; it is a very hard metal.
It is used for hardening glass and steel. Boron-based components like fertilizers and insecticides are used for plant growth.
Arsenic (As)
Arsenic is a risky element that can interfere with humans' respiration process. It has an atomic number of 33.
It can form 3 covalent bonds with metales and is toxic for plants as well as animals. It is used to harden metal alloys and leads. It is also used as an insecticide.
Silicio (Si)
Silicon is a versatile metalloid that is very common in the construction industry and also in semiconductors.
It has an atomic number of 14 and is very reactive, commonly found in soils, sand, and rocks. It is a poor electrical conductor and is used in manufacturing enamels, glass, ceramics, and semiconductors.
Antimonio (Sb)
Antimony has 51 as its atomic number and is used in paints and alloys. It has a metallic appearance in silver-white. It is brittle and hard in nature. It is a poor electrical conductor and is used in semiconductors in the form of a dopant and also for manufacturing enamel and glass.
Tellurium (Te)
Tellurium is an alloying element that has 52 as its atomic number. It is found in mined ores and has a brittle nature. It dissolves in nitric acid and remains insoluble in water. It makes the alloys resistant to corrosion.
Germanium (Ge)
Germanium is used in transistors and has an atomic number of 32. It has a metallic look and is brittle in nature. It offers poor electrical conductivity and enhances the corrosion resistance of alloys. It is also used in detectors, which are made using infrared and even semiconductors.
Physical Properties of Metalloid
The physical properties of metalloids are highlighted in the section below.
Appears to Have Metallic Luster
Metalloids have a look that is similar to metals– they have a reflective and metallic surface.
Boiling and Melting Points
Metalloids are solid when at room temperature.
Metalloids | Melting Points |
Germanium | 938.3 |
Silicio | 1410 |
Arsenic | 817 |
Boron | 2079 |
Antimonio | 631 |
Tellurium | 449.5 |
Densidad
The density of metalloids varies from one another but is less than that of metals and more than non-metals.
Conductividad eléctrica
Metalloids can work like insulators as well as conductors. They can be modified as per requirements.
For instance, when used for semiconductors, they pass through the process of doping. It is the process in which impurities are added to the metalloids to alter their properties. However, they are still not as conductive as metals in electricity.
Allotropes
Most of the metalloids can offer different allotropic forms as they have different physical properties. The three common allotropes of arsenic are gray, yellow, and black.
Conductividad térmica
The thermal conductivity of the metalloids varies from element to element. They generally have lower thermal conductivity than metals and higher thermal conductivity than nonmetals.
Fragilidad
Metalloids are prone to cracking and deforming due to their brittle nature.
Dureza
Metalloids have variable hardness, with arsenic having a hardness of 3.5, whereas boron has a hardness of 9.3.
Chemical Properties of Metalloids
The chemical properties of metalloids compose the following:
Reactivity with Nonmetals
Metalloids are reactive and can easily gain and lose electrons so that they can form ions which can be negatively or positively charged. They also combine with non-metals to form compounds.
Oxidation States
The oxidation states of metalloids vary and are featured in the table below:
Metalloid | Oxidation State |
Silicio | +4, 0 |
Germanium | +2, +4 |
Arsenic | +3, +5 |
Boron | +3, +2, +1 |
Antimonio | +3, +5 |
Tellurium | +4, +6 |
Moderate Ionization Energy
Metalloids have moderate ionization energy, which ranges around 200 kcal/mol.
Intermediate Electronegativities
Metalloid | Electronegativity |
Silicio | 1.9 |
Germanium | 2.01 |
Arsenic | 2.18 |
Boron | 2.04 |
Antimonio | 2.05 |
Tellurium | 2.1 |
Covalent Bonds
Metalloids are known to create covalent bonds. However, they do not make monoatomic ions similar to metals.
Formación de aleaciones
Metalloids are very commonly mixed with other elements to form alloys.
Reactivity with Acids
Metalloids have less reactivity with acids. For example, germanium and silicon are insoluble and do not react with acids. Arsenic and antimony react with strong acids.
Known as Amphoteric
Metalloids have properties of both metals as well as non-metals, which makes them known as amphoteric.
Applications of Metalloids
Metalloids have various applications, and some of these are discussed below:
Semiconductors: In semiconductors, germanium and silicon are used, and they can be used in computer chips, integrated circuits, and even solar cells. They have semiconducting properties, which is why they play a crucial role in electronics.
Ceramics and Glass: Arsenic, boron, and silicon are commonly used in cerámica and glass as they can work like a refractory agent. Borosilicate glass is also made using them as it can resist chemicals as well as thermal shock.
Alloys: Many alloys also have metalloids to enhance their properties. For instance, silicon is added to aluminum so that it can have more castability and strength. In steel, boron is added to enhance its hardness.
Photovoltaics: Solar cells and some metalloids, like germanium and silicon, are used to help convert sunlight into electricity.
Flame Retardants: Boron compounds, antimony trioxide, and aluminum trihydrate are used to work as flame retardants in many coatings, plastics, and building materials. They help with fire safety.
Distinguishing and Most Useful Properties of Metalloids
The distinguishing properties of each metalloid and its applications are discussed below:
Boron: It is hard and resistant to heat; it is used in combination with silicon to create a glass that can resist thermal shock.
Germanium: Germanium is brittle and hard and very rarely used in semiconductors.
Silicon: Silicon is a shiny and gray metalloid that is used in semiconductors.
Tellurium: It has a brittle nature and enhances machinability when combined with steel.
Arsenic: It is a poisonous metalloid and is used in insecticides.
Antimony: It is brittle and hard, is alloyed with lead, and is even used for manufacturing paints.
Differences Between Metalloids, Metals, and Nonmetals
Propiedades | Metales | Non-Metals | Metalloids |
Ductilidad | Ductile | Brittle | Brittle |
Densidad | Alta densidad | Low Density | Moderate Density |
Conductividad eléctrica | High electrical conductivity | Poor electrical conductivity | Intermediate electrical conductivity |
Apariencia | Metallic luster | Dull surface | Some have a metallic luster |
State at Room Temperature | Solid | Solid | Solid |
Reflexiones finales
When it comes to choosing between metals, non-metals, and metalloids, understanding their properties is crucial. The guide above must have made you understand everything about metalloids and their applications.
If you are planning to have some components manufactured using any material, we at DEK puede ayudarte.
Preguntas frecuentes
What composed metalloids?
Metalloids are neither metals nor non-metals but are in the middle of both having combined properties.
How can metalloids be identified?
Metalloids can be identified by looking at their properties. They have a brittle nature and lustrous appearance and stay solid at room temperature.
Can mercury be classified as a metalloid?
No, mercury cannot be classified as a metalloid.
What elements belong to the metalloid group, and how are they used?
The elements in the metalloid group consist of arsenic, boron, antimony, silicon, tellurium, and germanium. They are used in various applications, such as fertilizers, insecticides, and semiconductors.
Automation is taking a lead in almost every sector and the major benefits are enjoyed by the manufacturing industry. CNC robotics have now made the process of precision machining very simple and quick.
The guide below explores everything about CNC robotics in detail, so let's read below to learn more.
What is CNC Robotics?
CNC robotics is a robotic method that improves and helps to boost the CNC machining process. A CNC robot is a very advanced invention that is designed for machining.
It is a type of equipment that looks after the entire project on its own using the protocols programmed. These machines do not wait for any input from the operator.
It offers various advantages to the manufacturing process and helps to manufacture a high volume of products in less time.
Why Choose CNC Robotics for Producing Robotic Parts?
There are multiple reasons that make CNC robotics a suitable method for producing robotic parts, and these are discussed below:
Increased Speed
CNC robotics is known to produce parts in a very short time. The process of machining is very fast and versatile enough to machine complex components. Custom robotic parts can be manufactured using CNC robotics in very little time.
Compatibilidad de materiales
CNC robotics, when used for robot parts, offers high compatibility with materials. It can work with a wide range of plastics as well as metals.
These parts are meant to move and lift items, which requires them to be strong and stiff. Hence, CNC robotics are suitable for manufacturing robotic parts as they work very well with different materials.
Acabado superficial
CNC robotics exercises a lot of control while machining a surface and hence creates components with excellent surface finish.
The components of robots are not only precise but also capable of going through surface finishing operations if needed.
Accuracy & Precision
CNC robotics can help create components that are the same as the specifications required. The precision of CNC robotics is very high, which makes it a suitable option for machining robotic components.
Rentable
It is a highly cost-effective process that is equipped with multiple tools. It is versatile and takes very little time to manufacture components. Hence, the one-time investment in the machine later on will offer high affordability in the long run.
Greater Complexity
Components of complex geometries and shapes are manufactured using CNC robotics. The parts that have slots, curves, and pockets can be matched very easily through the process of CNC tools; even the holes can be drilled.
CNC Machines vs CNC Robotics
Mecanizado CNC and CNC robotics are different in many ways, and these processes can be compared in detail. Some of these comparisons are discussed below.
- The performance of the machine is assessed by looking at the precision and accuracy of machining. CNC robotics have improved over time and have been able to give precision, which ranges between 0.1 to 0.2 mm. At the same time, CNC machining can achieve precision ranging between 0.02 to 0.05mm.
- CNC robotics offers versatility. It can cover multiple tasks at the same time due to its high automation. CNC machines, on the other hand, carry out specific operations like drilling, turning, and mulling efficiently. Robotics can move along multiple paths, and this aspect is not achieved in CNC machining.
- The tools in CNC robotics are less rigid, which results in a risk of deflection when hard materials are machined. In the case of CNC machining tools, however, they are highly rigid, which makes them suitable for harder materials.
- CNC robotics offers an extensive workspace and, when required, can add additional external axes to their workpiece. On the other hand, CNC machines have specific workspaces for machining components.
- CNC machines and robots are both expensive, but the performance of the robots gives a high value for money compared to CNC machines.
Types of CNC Robots Available in Different Industries
There are various types of CNC robots, each with unique capabilities. The common ones are discussed below.
Cartesian Robots
Cartesian robots are linear robots that work on their axis, namely x, y, and z of the cartesian system. These are used because they offer highly flexible configurations and can be modified in terms of size, precision, and speed.
These robots have a high range and are large in size, which makes them suitable for heavy workpieces. These robots are used in the assembling process, material handling, pick and place, loading and unloading, screw driving and fastening, packaging, etc.
Articulated Robots
Articulated robots have rotary joints; they possess 2 to 10 axes and offer excellent freedom of motion. They are suitable for handling multiple types of pieces in varied sizes and can be used for versatile applications.
The process of material handling, assembling, arc welding, machining, loading, and packaging are the common applications.
SCARA Robots
SCARA robots have four axes and can work on high-speed and repeatable operations. These robots work like human arms but at great speed and precision.
These robots improve the productivity of the process, reduce the cost, and ensure the safety of the workers. These robots conduct the tasks of assembling, picking and placing, packaging, machining, and inspection.
Collaborative Robots
Collaborative robots are suitable for performing repeated tasks, and they can conduct multiple processes in no time with enhanced productivity.
These robots tend to perform tasks like loading, unloading, assembling, etc. They work in collaboration with the staff.
Delta Robots
Delta robots are the types of robots that are used in applications associated with high speed. These are usually attached to work areas at the top to conduct tasks like assembling, sorting, picking and placing, disassembling, packaging, and sorting.
Common Robotic Parts Used in CNC Robotics
There are different types of robotic parts that are used in CNC robotics, and some of these are as follows:
CNC Robotic Arm
A CNC robot arm is the most important part of CNC robotics machining because it helps perform operations. It is used in many industries, and it is made using materials that are high-strength, like some high-end plastics, steel, and aluminio.
End Effectors
End effectors are such devices attached to the robotic arm ends so that the robot can perform multiple tasks. These end effectors have different functional vacuums, followed by grabbers and grippers, which help to conduct different operations.
Custom Jigs and Fixtures
Robotic operations need jigs and customized fixtures to hold the workpieces. These fixtures also help to locate the workpiece in a precise way every time. They are highly cost-effective and conduct different processes during machining.
Sensors and Controllers
Robots consist of sensors and controllers. These also include PCBs, which help them perform their operations. CNC robotics can be used to manufacture these components using different shapes and sizes without the need for chemical etching.
Will CNC Robotics Replace CNC Machines?
CNC manufacturing robotics also offers versatile advantages, but it can't match the speed and precision of the CNC machines that are present in the modern world.
Robots offer high versatility, but CNC machines offer a high specialization in fabricating components of specific types of parts.
The accuracy of the CNC milling and lathe machining is commendable and cannot be matched by robots also due to their low rigidity.
Although the demand for CNC robotics is growing, they cannot replace CNC machines entirely due to some limitations. Hence, they can work in collaboration with CNC machines.
DEK - CNC Machining Services for Your Robotic Parts
Nosotros en DEK are well-equipped with highly specialized and innovative CNC machines that help us manufacture robotic parts for your projects.
So, if you are looking for high-quality, precise robotic parts customized as per your requirements, get in touch with us, and we will manufacture them for you.
Conclusión
The guide above has a detailed discussion of CNC robotics and its comparison with CNC machining. As you have gone through it, you must have understood it in detail. It will help you have the components designed by having a thorough understanding of it.
El proceso de fabricación de componentes mediante mecanizado requiere una evaluación de la maquinabilidad. La maquinabilidad es el concepto de materiales que se pueden procesar convenientemente. Requiere evaluar varios factores cuando se selecciona el material.
La siguiente guía es para ti si estás empezando un nuevo proyecto y quieres aprender sobre la maquinabilidad de los materiales. Así pues, leamos.
¿Qué es la maquinabilidad de un material?
La maquinabilidad de los materiales es la conveniencia de mecanizar un material de modo que se consiga la calidad requerida del componente. En cuanto a la calidad de la pieza, hay que analizar el acabado superficial, la tolerancia y la precisión dimensional.
Los materiales altamente mecanizables requieren menos tiempo y energía, por lo que el desgaste de la herramienta también es menor. Estos materiales generan componentes que tienen un acabado superficial refinado.
Comprender los índices de maquinabilidad
Existen muchos materiales y, entre ellos, seleccionar el adecuado en términos de maquinabilidad puede ser un reto para los ingenieros. Por eso, al analizar los materiales adecuados, se tienen en cuenta los índices de mecanizabilidad.
Las clasificaciones de maquinabilidad tienen una característica estándar en la que se considera el material de referencia por conveniencia. Por ejemplo, el grado de latón C36000 tiene un índice de maquinabilidad 100%. Cuando los materiales se vuelven difíciles de cortar, la clasificación de maquinabilidad que poseen se reduce.
¿Cómo mejorar la maquinabilidad de los materiales?
Con el fin de mejorar la maquinabilidad de los materiales, algunas de las formas que pueden considerarse son las siguientes:
Aditivos materiales
Los aditivos de materiales mejoran la maquinabilidad de los materiales modificando su estructura reticular y mejorando sus propiedades mecánicas. Por ejemplo, las aleaciones de cobre se enriquecen con zinc para mejorar su mecanizabilidad.
Tratamiento térmico
Tratamientos térmicos como el recocido del aluminio y el acero tienden a reducir su dureza, lo que los hace más mecanizables. Mejora la estructura del grano y también libera tensiones internas, lo que facilita el mecanizado de los materiales.
Refrigerante/Lubricante
Las condiciones de corte pueden optimizarse para que el material sea más mecanizable, como el uso de refrigerantes y lubricantes. El uso de lubricantes tiende a reducir la fricción, y el desgaste de la herramienta también disminuye. Del mismo modo, el refrigerante ayuda a disipar el calor y reduce el estrés térmico.
Optimización de los parámetros de corte
La selección correcta de los parámetros de corte también influye en la maquinabilidad de los materiales. Cuando se considera una velocidad y un avance elevados, la maquinabilidad disminuye. Mientras que cuando se reduce la velocidad y avancela maquinabilidad aumenta.
Factores externos
Aunque no desee cambiar el material de la pieza, puede ajustar los demás factores, como la velocidad, el ángulo y el estado de funcionamiento de la herramienta de corte. Esto facilita el corte de materiales difíciles de mecanizar.
Factores que afectan a la maquinabilidad
Hay varios factores de los que depende la maquinabilidad, y algunos de estos factores que afectan a la maquinabilidad son los siguientes:
Propiedades de los materiales
Las propiedades de los materiales influyen en mayor medida en la maquinabilidad, y algunas de estas propiedades son las siguientes:
Dureza del material
La dureza del material determina la maquinabilidad. Los materiales duros son difíciles de mecanizar. Estos materiales necesitan más potencia y la herramienta tiene que ejercer una gran fuerza, lo que provoca un rápido desgaste de la herramienta.
Dureza
La tenacidad también es un parámetro muy importante para determinar la mecanizabilidad. Los materiales que tienen una dureza elevada son los que necesitan más fuerza de corte, como el acero al carbono, que no es mecanizable.
Además, estos materiales producen incluso muchas virutas, que se enredan en la herramienta y desgastan su superficie.
Resistencia a la tracción
Si la resistencia a la tracción del material es alta, dificulta su mecanizado. Consumen mucha energía y resisten la deformación, lo que provoca problemas durante el mecanizado.
Propiedades térmicas
La capacidad de disipación del calor del material también determina su mecanizabilidad. Algunos materiales son muy blandos y no pueden soportar el calor, lo que dificulta su mecanizado.
Condiciones de mecanizado
El comportamiento del material cuando se corta también influye en la maquinabilidad. Algunos de estos factores se comentan a continuación.
Parámetros de corte
Los parámetros de corte se componen de avance, profundidad de corte y velocidad. Es esencial optimizarlos para conseguir un mecanizado mejorado. Cuando se cortan materiales a alta velocidad, el material ofrece menos mecanizabilidad. Del mismo modo, la profundidad de corte también desempeña un papel importante, ya que una profundidad elevada repercute en la integridad de la superficie.
Herramienta de corte
Mecanizado CNC tiene fresas que influyen en la maquinabilidad. La resistencia y el filo de la fresa son vitales. El ángulo de corte conduce incluso a mejorar la formación de viruta y debilita las herramientas.
Refrigerante y lubricante
La aplicación de lubricantes y refrigerantes mejora la maquinabilidad de los materiales. El calor se disipa y aumenta la fricción. Ayuda a mejorar el acabado superficial y suaviza el proceso de corte.
Estado de la máquina herramienta
El estado de la herramienta también determina la maquinabilidad. Las máquinas más antiguas presentan más vibraciones cuando se someten a cargas de corte dinámicas, lo que dificulta el corte de los materiales.
Materiales típicos con excelente maquinabilidad
En la tabla siguiente figuran los materiales que ofrecen una alta maquinabilidad.
Material | Maquinabilidad |
Aluminio | 90-95% |
Acero | 30-40% |
Plásticos | 70-90% |
Otros metales:
Titanio Latón de corte libre Magnesio |
20-25%
100% 50-55% |
¿Cómo medir la maquinabilidad de los materiales?
Hay varios factores que afectan a la maquinabilidad de los materiales. Existen diferentes formas de medir la maquinabilidad de los materiales. Parámetros como el consumo de energía, la vida útil de la herramienta de corte y el acabado superficial ayudan en esta medición.
- El consumo de energía ayuda a evaluar la maquinabilidad mediante las fuerzas necesarias para cortar el material utilizando las métricas energéticas estándar.
- La vida útil de la herramienta de corte también ayuda a evaluar la maquinabilidad de la duración de la herramienta cuando corta el material.
- La maquinabilidad también se evalúa a través del acabado de la superficie, si hay un borde acumulado o no, ya que los materiales maquinables no dejan este borde.
Sin embargo, no son medios de medición totalmente fiables. La AISI ha creado un sistema de clasificación basado en ensayos de torneado. Dichas calificaciones se expresan en forma de porcentajes.
Procesado eficiente de piezas difíciles de mecanizar por DEK
DEK ofrece el mecanizado de materiales de varios tipos utilizando su experiencia y herramientas avanzadas. Por lo tanto, si hay materiales difíciles de mecanizar pero que son un requisito integral de su proyecto, póngase en contacto con nosotros. Le ayudaremos a fabricar estos componentes con alta calidad, precisión y acabado superficial.
Conclusión
La maquinabilidad es uno de los aspectos más cruciales de la fabricación, independientemente de la industria para la que se necesite el componente. La necesidad de mecanizado es esencial para conseguir la forma deseada.
Mechanical testing is used to evaluate product designs. It is also used for validation, identification, and characterization of the products. Mechanical testing allows manufacturers to ensure that they are utilizing material appropriately and that the process is safe and cost-effective.
If you want to learn more about what is mechanical testing, the guide below is for you.
What is Mechanical Testing?
Mechanical testing consists of a series of standardized tests that help determine the properties of the material. It also helps in testing whether a particular material is suitable for the given applications or not.
Mechanical testing is a very important aspect of the manufacturing process to achieve some standards set by ISO and ASTM. These tests help manufacturers determine which materials are high quality and choose the appropriate ones.
¿Cómo funciona?
Mechanical testing processes can help determine the material properties when the load is applied to them. It is a very crucial part of the manufacturing process. The material is subjected to load, and the deformation is assessed. Different types of tests are conducted to verify the material properties.
Types of Mechanical Testing
There are different types of mechanical tests to verify the material properties, and some of these are as follows:
Tensile Testing
Tensile testing helps determine the strength of the material and assess its properties, such as yield deformation, strain, and stress. The material is subjected to a given force and is pulled from the two ends till it breaks.
This testing is done in a testing machine that works either by electric or hydraulic system. The data is recorded at different forces. The standards for tensile testing are ASTM D412, ASTM D638, ASTM E8, ISO 37, ISO 527-2, etc.
Pruebas de dureza
Hardness testing assesses the hardness of a material. This test is conducted on the material only and not on the final product. The different types of hardness tests are the Brinell test, Rockwell test, and Vickers test. These tests help analyze surface hardness.
These tests are conducted with indenters to create an indentation on the material’s surface. The depth and force of the indentation help collect the data for the hardness test.
Pruebas de impacto
Impact testing is a type of mechanical testing that analyzes the amount of high-impact load a material can take. It allows the impact loads to be applied with a high force multiple times for a longer span of time to analyze the material’s strength.
Pruebas de fatiga
Fatigue testing is suitable for products that undergo cyclic loading. Components with dynamic mechanical loads need this type of testing, which changes their direction and magnitude now and then.
Fatigue testing helps to consider parameters consisting of the number of cycles and their frequency followed by the types of load.
Fracture Toughness Testing
Fracture toughness testing allows manufacturers to analyze the amount of energy required to break the material that has a crack already. The manufacturers can ascertain the ability of a material to resist the fracture using an intrinsic stress factor. The standards for this type of test are ASTM E1280 and EEMUA pub. 158, BS 7448, etc.
Compressive Testing
Compressive testing determines the material’s behavior, which is subjected to loads that end up crushing them. It is a very important manufacturing part as the material has to pass through different phases. This test is compatible with a wide range of materials, including plastics, metals, and ceramics.
Pruebas de torsión
Torsion testing carries out an evaluation of the way a material behaves when subjected to angular stress. It helps to measure properties like durability, shear yield strength, and shear modulus. There are different types of torsion tests, and these are as follows:
- The pure torsion test involves the application of a pure torsional load.
- The axial torsion compass is a combination of axial and torsional forces.
- Proof testing consists of applying the torsional load for a given period of time.
- Failure testing consists of twisting the material until it breaks.
Creep Testing
Creep testing is a test that consists of subjecting the material to consistent stress for extended temperature, and the data is recorded. This test helps to analyze the material’s ability to deform when subjected to constant stress at a given temperature. It is suitable for materials like soldered joints, metal workings, and springs.
Resistencia a la corrosión
Corrosion resistance tests are meant to determine the reaction of materials when subjected to different conditions, including saline and non-saline. These tests have different techniques, which are as follows:
- Salt spray is applied on coated and uncoated materials to consider their reaction.
- CASS exposure testing is an aggressive method that helps to test chromium and aluminum plating on materials made of steel and zinc. The components are exposed to copper-accelerated acetic acid salt spray to determine whether the material corrodes or not.
- Immersion corrosion testing involves immersing the material in an aggressive environment with moisture and determining the weight loss due to corrosion.
Non-destructive Testing
Non-destructive testing is conducted without causing any damage to the material. Some of these methods are the following:
- Acoustic emission testing detects the active defects by using ultrasound waves.
- Electromagnetic testing uses electromagnetic fields to identify the defects in the material.
- Leak testing detects the cracks and leaks in the materials.
Why Should You Invest in Mechanical Testing?
The success of the manufactured components depends on the quality of the materials used. The assessment of those materials relies on mechanical testing. Hence, there are many reasons to invest in mechanical testing, and some are discussed below:
Internal Audit
The internal audit in the process of manufacturing and product design helps manufacturers assess the material and processes and ensure it meets international standards.
The internal audit can detect whether the materials used in the manufacturing process pass the tests for international standards or not. If they don’t, the manufacturer can opt for an alternative solution.
External Audit
External audit is a process in which the organization conducts the testing of the products of another organization. It helps to test the quality of the product and ensure that it adheres to international standards. The materials that do not pass through the mechanical tests fail the external audit and lead to a waste of resources and time.
Increased Costs
The use of inferior quality materials leads to wastage, and the product’s authenticity is also questionable. Moreover, the products can be over-engineered, which increases production costs. Hence, the production cost can be reduced when the right material is chosen.
Product Failure
Product failure is one of the costly consequences of not considering mechanical testing. It leads to product damage and may also lead to legal consequences. It doesn’t take place if the internal and external audits are done, but there could be a problem during auditing.
Possibility of a Future Failure
In case the product fails during the testing process, the failure analysis can help predict that it will fail in the future as well. It helps to inspect the file aid part and think about its improvement.
Why is Mechanical Testing Important for Materials?
Mechanical testing is very important to understand the way materials will work when subjected to real world stress. By evaluating the material properties like ductility, toughness, strength, and hardness, the material can be assumed to adhere to specific standards.
Industries like automotive, aerospace, and construction are sensitive, and there is no margin for using inferior quality material.
Mechanical testing not only helps ensure the reliability of the product but also allows engineers to create product designs by analyzing their lifespan. The costly failures are prevented, and the performance of the parts is optimized.
Is Industrial Mechanical Testing Important?
Structural integrity testing is very important to ensure the cost-effectiveness and safety of the process. Fabricantes need mechanical testing to ensure the product’s quality, their reputation is preserved, and their production cost is reduced. The material dealers also adhere strictly to international standards so that their credibility is maintained.
The customers are also assured and relieved that the materials have undergone mechanical testing, which will prevent the risk of failure and ensure safety.
Ensuring Quality of Your Parts: DEK Can Help
The quality of components is crucial in every industry. If you are also looking to manufacture custom components that have passed mechanical testing, you can contact DEK. We always conduct mechanical tests for all the components we manufacture and ensure their materials are high quality.
Conclusión
Mechanical tests are important aspect of manufacturing. It is crucial to have a detailed understanding when it comes to conducting these tests. The information from this guide will help you make the most of the testing processes for your projects.
Preguntas frecuentes
Which is the most used mechanical test?
Tensile testing is a very common method. It allows the manufacturers to have an idea of the strain and stress that the material can handle.
What is material testing, and what is its role in the industry?
Material testing helps to differentiate between real and fake materials by testing their properties before using them in your products.
When should mechanical testing be done?
Mechanical testing is carried out to test the material quality and properties in a specific environment.