solicitar presupuesto

The manufacturing process of components in different industries doesn't just start immediately. It requires the prototypes to be manufactured first.

Prototypes are a crucial part of the development stage when it comes to manufacturing metal prototypes. Some of the aspects to consider are featured in the guide below. So, let's read on.

What is a Metal Prototype?

Metal prototyping consists of creating a sketch of the metal product, which is done before starting the production. The designers test these models and, if required, update them.

Metal prototyping is a crucial process in most of the industries and it offers various advantages.

When Would You Choose Metal for Prototyping

Metal prototypes are created to check their functionality and performance. It is important to align them with the process of production.

Metal prototyping supports cost-efficiency and smooth development which helps to transform metal prototypes in the actual part.

Normally, plastics are chosen for prototyping but it is challenging to transform plastics into metals, and hence, converting metal models into metal parts is easier.

Ventajas de los prototipos metálicos

Ventajas de los prototipos metálicos

Metal prototypes have multiple benefits, and some of these are as follows:

Common Metals Used in Rapid Prototyping

Common Metals Used in Rapid Prototyping

Creación rápida de prototipos uses two of the most common metals, which are aluminum and steel. Other than these metals, other metals like copper, chrome, magnesium, and copper are also used.

Titanium is a metal that offers high strength and density, as well as a high melting point. Aluminum is also lightweight and offers high machinability. It even has multiple advantages which include scalability, corrosion resistance, and high electrical and thermal conductivity.

Magnesium alloys are also used for producing metal prototypes, and they can be used in applications that need low weight density and high thermal conductivity.

Steps of Making Metal Prototypes

The steps for making metal prototypes are the following:

How Do You Make a Metal Prototype?

There are different fabrication processes for making metal prototypes, and some of these processes are as follows:

Mecanizado CNC

advantages of cnc machining

Mecanizado CNC uses the process of CNC machines for manufacturing metal prototypes.

CNC machines use a subtractive process of manufacturing, removing metal, and then achieving the required shapes of the component. CNC machining is compatible with metals like aluminum, zinc, steel, and magnesium.

Impresión 3D

Impresión 3D is an efficient method for manufacturing metal prototypes. The process of 3D printing is an additive process that involves manufacturing components layer by layer.

It uses different technologies like DMLS and SLM. Using laser beams, they can create layers of parts using different metal powders. CAD design inputs to attain the required designs and helps achieve complex shapes and detailed features.

Fabricación de chapas metálicas

Sheet metal prototyping is used for manufacturing parts using different processes. The process involves cutting, deforming, and assembling the sheet metal parts.

The process uses sheet metal plates on a flatbed to cut the shapes and achieve the required parts.

The process of sheet metal fabrication involves laser cutting, punching, bending, and welding. It can help create prototypes consisting of brackets, enclosures, and other parts.

Fundición de metales

fundición de metal

The process of metal casting is pouring molten metal into the molds, which have cavities, and creating the required shapes. Once the liquid metal material is solidified, the desired prototype is achieved. It is an efficient method of producing components of different shapes.

Extrusión de aluminio

Aluminum extrusion allows the creation of properties with the dies, which can produce parts in a longer shape. These parts are cut to the required length after being extruded.

Aluminum extrusion is mostly opted for high-volume production but is also used for creating metal prototypes. Parts like brackets, joints, and metal bars are also manufactured.

Considerations for Making Metal Prototypes

When making metal prototipos, some of the considerations are as follows:

Calidad

Inspección de calidad

The quality of the metal prototype is compared with the final production, and hence, it is important to ensure that the quality of the prototype is up to the mark. It offers durability and ensures the desired surface finish.

Propósito

The purpose of metal prototypes is based on the product development stages; every stage has a specific functional requirement and desired features. It determines the prototype quality and impacts the function of the prototypes as well.

Complejidad de las piezas

The features of the prototype and its design complexity impact the selection of the process. Every process offers a different type of complexity. Impresión 3D offers a suitable process for complex components and CNC machining for parts with tight tolerance.

Cantidad

The prototype parts you require must be considered, too, when selecting the method for fabrication. Some processes are meant for less volume, and some for high volume.

Cost/Budget

Costes

When choosing the prototyping process for metal parts, make sure to consider the time and money that is spent on the manufacturing. Select the metal prototype process based on the budget you have.

Applications of Metal Prototype

Metal prototypes have various applications, and some of these are as follows:

Functional Testing: Metal prototypes are suitable for testing the durability and mechanical properties of the parts by subjecting them to real-world applications.

Structural Testing: Metal prototypes are also evaluated by subjecting them to heavy loads to check their load-bearing capacity.

Tooling: Prototypes for tools and molds are also manufactured to test them.

Conclusión

Understanding everything about metal prototyping is very important so that you can achieve the required components with no defects when you head to the final production.

Nosotros en DEK offer you the opportunity to have metal prototypes created with complex shapes and features on an affordable budget. So, get in touch with us to have your hands on these prototypes.

Preguntas frecuentes

What are the methods for manufacturing metal prototypes?

The different methods for metal prototype manufacturing are CNC machining, 3D printing, sheet metal fabrication, and aluminum extrusion.

What is the purpose of metal prototyping?

The purpose of metal prototyping is to create models of the components that are to be used in different applications. Testing these prototypes helps to make improvements.

What materials are suitable for metal prototyping?

The metals suitable for prototyping metal parts are aluminum, titanium, copper, and stainless steel.

Los metales son versátiles y, por tanto, se utilizan en diversas aplicaciones. Hay distintos tipos de metales, como los férricos y los no férricos.

La guía que figura a continuación ofrece una visión detallada de los distintos tipos de metales no férreos. Así pues, si desea conocer estos metales, el artículo que figura a continuación los explora.

¿Qué es un metal no férreo?

Los metales no férreos son metales que no contienen hierro ni fierro. Por lo tanto, todos estos metales puros se conocen como no ferrosos, excepto el hierro.

Estos metales son caros, pero ofrecen excelentes propiedades como resistencia a la corrosión y el óxido, facilidad de mecanizado y naturaleza no magnética.

Los metales no ferrosos son reciclables y también consumen menos energía cuando se reciclan. Las excelentes propiedades que poseen los metales no ferrosos hacen que los fabricantes ignoren su coste.

Hay muchos tipos de metales preciosos y no preciosos que entran en la categoría de metales no férreos.

Historia de los metales no ferrosos

Metales no ferrosos

Metales no ferrosos son aquellos metales que fueron los primeros en ser utilizados por el ser humano.

Debido a que no se corroen, fueron adoptados por los humanos, y el primer material no ferroso descubierto fue el cobre. Los humanos aprendieron las técnicas de moldeado y forjado utilizando el cobre.

Después de la Edad del Cobre, el cobre se aleó con estaño para producir bronce. Los humanos utilizaron metales no ferrosos durante mucho tiempo y, en el año 5000 a.C., idearon nuevos métodos para fabricar bronce.

Aleaban el cobre fundiéndolo y mezclándolo con metales como el arsénico y el estaño. Aquí terminó la Edad de Piedra y comenzó la Edad de Bronce.

Cuando se descubrieron también el bronce, la plata y el oro, se empezaron a fabricar adornos con ellos en lugar de piedra y madera. Hoy en día, los metales no férreos se utilizan para motores de vehículos, cuberterías, adornos y muchas cosas más.

Proceso de producción de metales no férreos

Los metales no férreos se procesan de tres formas muy populares: la fundición a la cera perdida, el proceso de metal en frío y el proceso de fundición en arena.

Los metales no férreos son conocidos por su alta conductividad, su resistencia a la corrosión y el óxido y sus propiedades no magnéticas. Son adecuados para fabricar componentes metálicos e incluso piezas estructurales.

Estos metales se refinan mediante electrólisis y, al hacer la fundición, los fabricantes los añaden al hierro para crear una fundición con propiedades mejoradas.

Tipos de metales no férreos y sus propiedades únicas

A continuación se describen los distintos tipos de metales no férreos y sus propiedades.

Aluminio

Aluminio

Es un tipo de metal no férreo muy importante, ligero y muy fácil de mecanizar. Se utiliza como metal base en muchas aleaciones e incluso es muy rentable.

Aluminio se utiliza en muchas aplicaciones, como aviones, automóviles, cuadros de bicicleta, latas de bebidas y yates.

Titanio

Titanio tiene una resistencia sin fisuras y no se corroe. El titanio es muy resistente y se utiliza en aplicaciones aeroespaciales, deportivas, médicas y agrícolas.

Cobre

Cobre tiene aleaciones como el latón y el bronce y se utiliza en muchas aplicaciones. Se emplea en intercambiadores de calor y recipientes calefactores por su alta conductividad térmica. También se emplea para fabricar alambres, cubiertas y utensilios de cocina.

Bronce

Bronce es un material maleable y ligero que presenta una gran resistencia a la corrosión. También ofrece una excelente resistencia y puede doblarse y cortarse con gran facilidad. El bronce se utiliza en revestimientos de casas, canalones, electrónica y señalización exterior.

Latón

Latón Metal no férreo

Latón es una aleación de zinc y cobre y está compuesto por otros metales como el níquel y el estaño. Es muy duradero y ofrece una gran conectividad térmica y eléctrica. Se utiliza en campanas, bocinas, utensilios, cojinetes, piezas de fontanería y válvulas.

Zinc

Aleaciones de zinc con cobre para la conformación del latón y ofrece una excelente resistencia a la corrosión.

Se utiliza en muchas aplicaciones, como barandillas, puentes colgantes, intercambiadores de calor, tejados metálicos y muchas más. Ayuda a dispersar el calor durante el proceso de fabricación del caucho.

Níquel

El níquel es un metal plateado que ofrece una excelente tolerancia a la temperatura, tenacidad y resistencia a la corrosión. Puede adquirir excelentes características cuando se alea con otros elementos. Se utiliza en aviones, equipos marinos y automóviles.

Plomo

El plomo es uno de los metales no férreos más pesados; es tóxico y tiene riesgos para la salud. Es pesado y puede optarse por piezas resistentes a la corrosión. Es denso y dúctil, pero ofrece escasa conductividad eléctrica.

Se utiliza en la fabricación de cables eléctricos, cinturones de lastre, depósitos de ácido y baterías.

Plata

Plata Metal no férreo

La plata es un metal blando y de aspecto brillante. Ofrece una gran maleabilidad y conductividad. Se utiliza en muchas industrias y se opta por ella para fabricar cojinetes de motor, joyas, vajillas y otros tipos de piezas.

Oro

El oro es un metal no ferroso que posee una excelente maleabilidad. Ofrece resistencia a la corrosión y tiene una gran ductilidad. No reacciona con otras sustancias químicas. Se utiliza en joyería, como pulseras, cadenas y anillos.

Tabla de propiedades y aplicaciones de los metales no férreos

Metales no ferrosos Conductividad eléctrica Conductividad térmica Resistencia a la corrosión Fuerza Aplicaciones
Aluminio Moderado Alta Moderado Moderado Automóviles, aviones, latas
Titanio Bajo Moderado Alta Alta Medicina, aeroespacial y agricultura
Cobre Muy alta Alta Moderado Bajo Cables, fontanería, utensilios de cocina
Bronce Moderado Moderado Alta Moderado Canalones. esculturas
Latón Alta Alta Moderado Moderado Válvulas, campanas, piezas de fontanería
Zinc Bajo Moderado Alta Bajo Puentes colgantes, barandillas
Níquel Moderado Moderado Alta Alta Aplicaciones marinas, automóvil
Plomo Muy bajo Bajo Moderado Bajo Baterías, depósitos de ácido
Plata Muy alta Muy alta Bajo Bajo Vajilla, Joyería
Oro Alta Alta Muy alta Bajo Joyería, Conectores eléctricos

Diferencias entre metales ferrosos y no ferrosos

Diferencias entre metales ferrosos y no ferrosos

Metales ferrosos tienen una gran cantidad de hierro, mientras que los metales no férreos no tienen hierro. Los fabricantes eligen los metales ferrosos por su resistencia y durabilidad, y suelen ser seleccionados por la industria de la construcción.

Los metales no férreos, en cambio, son resistentes a la corrosión y maleables; por eso se opta por ellos para fabricar canalones, tejados, joyas, etc.

Aplicaciones habituales de los metales no férreos

Aplicaciones habituales de los metales no férreos

Las aplicaciones habituales de los metales no férreos son las siguientes:

Conclusión

Los metales no ferrosos están por todas partes y todos los componentes están hechos de ellos. Si busca componentes no ferrosos precisos y de alta calidad, puede ponerse en contacto con nosotros en DEK.

Ofrecemos procesos de fabricación especializados utilizando los mejores metales no ferrosos para sus proyectos.

Injection molding doesn't need any introduction as it has been catering to many industries for years. However, under the head of injection molding comes two very important terms: insert molding and overmolding.

If you are planning to start a new project and want to learn the difference between insert molding vs overmolding, the guide below is for you. So, let's read.

What is Insert Molding?

Insert molding is a process that assembles the plastic component with a metal insert. The plastic is injected into the mold. As soon as the plastic solidifies, the component and insert are assembled.

Insert molding is mostly used to create metal-attached plastic components. This process is commonly observed when creating fasteners so that they can help assist with assembling different products.

Benefits of Insert Molding

What is Insert Molding - Applications & Considerations

Insert molding offers various benefits, and the most important ones are discussed below:

Limitations of Insert Molding

Insert molding has some limitations along with advantages, and these are as follows:

What is Overmolding?

Overmolding is a type of injection molding, but in this process, the molding takes place over another component, which is also made using moldeo por inyección.

The process combines different types of plastics to achieve functionality or aesthetics. It is used in screwdrivers for making their handles, toothbrushes or power drills.

Benefits of Overmolding

overmolding products

The benefits of overmolding are as follows:

Limitations of Overmolding

Some of the limitations of overmolding are as follows:

Differences Between Insert Molding vs Overmolding

efficiency, quality, speed, cost
The section below highlights the differences between overmolding and insert molding in detail.

Proceso

Insert molding consists of injecting just one shot of molten plastic, whereas overmolding requires two shots of molten plastic to be inserted.

Velocidad

Insert molding takes time to mold another layer because the two pieces are manufactured separately. Hence, compared to overmolding, insert molding takes more time.

Overmolding is quick. It doesn't need two pieces to be manufactured separately, and direct molding takes place over the first product to create the second one.

Selección de materiales

Overmolding doesn't need adhesive, and the selection of the material needs to be adequate enough to create a strong component.

Similarly, insert molding also doesn't need any additional fasteners as the metal components are already present in the mold.

Coste

Insert molding can help reduce the cost of assembling and can create thousands of parts in a single day. However, overmolding is expensive as it requires double steps.

Common Applications of Insert Molding vs Overmolding

Common Applications of Overmolding and Insert Molding

There are many applications of insert molding and overmolding as they cater to versatile industries, and some of these are discussed below:

Automóvil

In the automobile sector, the two processes allow the components to have a combination of plastic and metal parts. The process of manufacturing batteries, dash panels, handles, and knobs all use insert molding.

Cosmetics

Most of the equipment used in the cosmetics industry is made using overmolding and insert molding, as they help in enhancing the overall look of the products.

These methods help to create special surfaces of components composed of different colors. Some of the cosmetic products are makeup brushes, bottles of perfumes and even compact powders.

Electrónica

The placement of the rubber on the electrical wire is attained through insert molding. It creates coats on the electronic products and makes handling them safer.

How to Choose Between Insert Molding vs Overmolding for Your Project

How to Choose Between Insert Molding or Overmolding for Your Project

When choosing between insert molding o sobremoldeo for your projects, some of the considerations that you must keep in mind are highlighted here. It will help you make the relevant decisions.

Overmolding is suitable when thermoplastics and rubber are used, and multiple colored layers are used on the components. Moreover, the components do not need to be disassembled later on.

Insert molding is suitable where a prefabricated substrate is used, and the metals or computerized parts are contained in the substrate.

Conclusión

Understanding the differences between overmolding and insert molding is very important to make a relevant decision between the two processes and their selection. Hence, the guide above must have helped you in this regard.

If you are looking forward to having hands on the components made through the two processes, DEK can assist you.

Preguntas frecuentes

What is TPE overmolding?

TPE overmolding is a process of injecting TPE into an existing plastic part.

Is insert molding the same as 2K injection molding?

Insert molding is composed of creating a secondary component on a substrate, 2K molding is a double shot injection molding that injects different materials in a mold with multiple chambers.

What is two-shot injection molding?

The shot injection molding process involves molding multiple parts using a single tool.

What are inserts in injection molding?

The inserts are metal parts that are used for manufacturing components by having molten plastic with it using injection molding.

Machined components require secondary processes that improve their surface finishing and enhance their functionality. There are different types of surface finishing processes and among them, e-coating is also widely adopted.

The guide below tells everything about what e-coating is, how it is applied, and what benefits it offers. So, let's read below.

What is E-Coating?

E-coating is a surface finishing process in which the components are submerged in a bath of a water-based solution containing epoxy or paint. The layer of paint sticks to the surface until the desired finished component is attained.

How E-coating Works?

The process of e-coating has several steps, and each step is discussed below.

Limpieza

Cleaning the surface before coating

The components to be coated are first cleaned using degreasers so that any dirt, impurities, or oil can be removed, improving the adhesion of the coating.

Rinsing

After cleaning the component, make sure to rinse it so that the residues from the component are removed.

Tratamiento de superficies

Surface treatment before coating

The surface of the component is treated with either chromate or phosphate coating, which enhances the adhesion and makes it resistant to corrosion. It is basically a process where the component is stabilized for an improved coating impact.

Submerging in Solution

The component is then rinsed again using deionized water and then immersed in a water-based solution bath that has the coating.

Electrocoating

Electrocoating

Electric current is then applied to the components, which creates attraction between the particles and deposits the coating on the surface.

Curing and Cooling

Once the coating is carried out, the components are kept at a high temperature for curing so that the coating is hardened and sticks perfectly to the surface. Once cooled, the components are ready for use.

Characteristics of E-Coating

E-Coating vs Powder Coating - What’s the Difference

E-coating has some characteristics that make it suitable for applications, and these are as follows:

Advantages and Disadvantages of E-Coating

E-Coating vs Powder Coating - What’s the Difference

E-coating has benefits as well as limitations, and these are highlighted in the section below:

Ventajas

Desventajas

Which Materials are Suitable for E-Coating?

Recubrimiento electrónico

The materials that are suitable for e-coating are as follows:

Acero: Steel is a very commonly used material in most applications, and every type of steel can be e-coated. The process creates a barrier of protection, and the components can be kept away from corrosion and rust.

Aluminio: Aluminio is also a very suitable metal which helps with e-coating. It is lightweight so it is used in automobiles, electronics, and aerospace. E-coating these aluminum components ensures resistance against weathering and also enhances the structural integrity of the components.

Zinc: Zinc components are also coated using an e-coating process, which provides a layer of protection against corrosion.

Cast iron: The components made using cast iron are used in applications that need high strength. It helps protect the components from moisture and chemicals, ensuring their life.

Applications of Using E-coating

Electrocoated Industrial Equipment

The applications of e-coating can be observed in various industries, and some of these are as follows:

Automóvil: E-coating protects the sheet of steel that is used in the doors and fenders of a car from corroding.

Electrónica: E-coating protects the circuit boards on electric applications from oxidation and contamination.

Marina: Steel and aluminum components used in yachts and boats are protected from corrosion.

Aeroespacial: E-coating protects the aircrafts from wearing off and these components consist of hinges, doors, and landing gear.

Things to Consider Before E-coating

llantas de camión electrocincadas

Some of the considerations which are important to be taken into account while opting for e-coating are as follows:

E-Coating vs. Powder Coating

Recubrimiento en polvo de piezas metálicas

E-coating and powder coating are processes opted for acabado superficial of the components. However, e-coating offers an ultra-thin, uniform coating and helps to cater to components that have intricate shapes.

Meanwhile, recubrimiento en polvo has the ability to offer multi-colored coating and texture. It is suitable for multiple applications. It is even suitable for outdoor applications as it offers protection against UV rays.

Conclusión

E-coating is a versatile process widely used in different industries. It enhances the surface finish and performance of a component.

If you are looking to have your components finished through e-coating, DEK can be your go-to choice. We have an expert team overseeing the process to ensure a smooth finish and durable results.

Los procesos de mecanizado se utilizan para fabricar componentes en muchas industrias y aplicaciones. Existen varios tipos de procesos de mecanizado, y cada uno tiene una finalidad específica.

El mandrinado y el torneado son dos procesos de mecanizado muy comunes que se eligen por su exactitud y precisión.

Si quieres conocer sus diferencias, en la siguiente guía encontrarás una comparativa entre aburrido y giratorio, así que vamos a leer.

¿Qué es el mandrinado CNC?

El mandrinado CNC es un proceso de mecanizado que amplía los orificios pretaladrados con gran precisión. Elimina material del orificio y ayuda a conseguir el acabado superficial y el diámetro requeridos. El proceso de mandrinado CNC trabaja en el orificio interior y se utiliza en la industria aeroespacial, automovilística y otras industrias en las que se requiere una tolerancia ajustada.

Cómo funciona el aburrimiento

Mecanizado por mandrinado: Guía detallada

En el mandrinado CNC gira una herramienta de corte que consiste en una barra de mandrinar y se inserta en el orificio pretaladrado presente en la pieza de trabajo. La barra de mandrinar se mueve siguiendo las instrucciones de la máquina.

La máquina CNC encaja la barra de mandrinar en el orificio y, a medida que gira, va extrayendo el material del componente. Los parámetros de corte pueden ajustarse para mayor precisión, como la velocidad y el avance.

Ventajas e inconvenientes del mandrinado CNC

Los pros y los contras del mandrinado CNC son los siguientes:

Pros

Contras

¿Qué es el torneado CNC?

El torneado CNC es un proceso de mecanizado en el que la herramienta de corte elimina material de un componente que gira.

Crea piezas cilíndricas y está controlada por una máquina CNC automatizada. Ayuda a garantizar resultados uniformes y precisos y puede fabricar poleas, ejes y otros componentes.

Cómo funciona el giro

CNC Torneado Molibdeno

El torneado CNC hace girar la pieza sobre un eje fijo y dispone de una herramienta de corte de un solo punto que corta el material. La pieza de trabajo se monta en el husillo del Torno CNCy la máquina hace girar la pieza a gran velocidad.

La herramienta de corte está fija y, al girar la pieza, corta el material y ayuda a conseguir la forma deseada. Tras el proceso de torneado CNC, pueden ser necesarias operaciones de acabado secundarias.

Ventajas e inconvenientes del torneado CNC

Los pros y los contras del torneado CNC son los siguientes:

Pros

Contras

Diferencia entre mandrinado y torneado

Las diferencias entre el mandrinado y el torneado se basan en su finalidad y se destacan a continuación en detalle:

Tamaño de procesamiento

Torneado CNC

En el proceso de torneado CNC, existen diferentes tamaños de productos e incluso dispone de múltiples útiles para sujetar la pieza. La herramienta de torneado se desplaza de dos formas, en línea recta o en forma de curva, para que se alcance el tamaño deseado.

El mandrinado CNC, por su parte, se elige sobre todo para componentes de pequeño tamaño y, por tanto, tiene dificultades para ofrecer precisión con las piezas grandes. El proceso de mandrinado CNC también cuenta con mesas de trabajo de tamaño reducido.

Orientación de la pieza

El torneado CNC hace girar la pieza alrededor de su eje y la herramienta de corte se desplaza paralelamente al eje. Es un proceso que crea formas cilíndricas. El proceso de mandrinado implica una estación de la pieza de trabajo, y la herramienta de corte gira a lo largo de su eje.

Retirada de material

Mecanizado por mandrinado: Guía detallada

La diferencia entre torneado CNC y mandrinado CNC se hace más visible cuando se trata de eliminar material. El torneado CNC elimina el material desde el exterior de la pieza. En cambio, el mandrinado CNC lo elimina desde el interior.

Tipo de máquina

El torneado CNC se realiza mediante un torno, que es el punto donde gira la pieza. Mandrinado CNCpor el contrario, se realiza horizontal o verticalmente a través de centros de mecanizado en los que la pieza permanece inmóvil y la herramienta de corte gira.

Aplicación industrial

Mecanizado por mandrinado: Guía detallada

Torneado CNC se utiliza en la fabricación de componentes cilíndricos o piezas con características cónicas. Se utiliza con seguridad en las industrias aeroespacial, automovilística y manufacturera.

El mandrinado CNC, por su parte, se opta en una industria en la que la precisión de los orificios internos de los componentes es importante. Se utiliza en la industria del petróleo y el gas y en la automoción para crear cavidades internas precisas.

Tipos de herramientas utilizadas

Los distintos tipos de herramientas utilizados en el mandrinado y el torneado son los siguientes:

Herramientas de mandrinar

Mecanizado por mandrinado: Guía detallada

Barra de mandrinar de un punto: Es una barra de mandrinar que tiene un solo filo de corte y se utiliza para agrandar los orificios internos y conseguir un acabado superficial fino.

Cabezal de mandrinar ajustable: El cabezal de mandrinar ajustable es una herramienta que ayuda al ajuste de precisión, y con él se puede modificar el diámetro del orificio.

Barras de mandrinar de doble corte: Se trata de barras de mandrinar cortantes que tienen dos filos de corte y pueden ayudar a crear orificios con diámetros mayores y mejorar la velocidad de arranque de material.

Herramientas de torneado

Máquina de torneado

Herramienta de roscado: Estas herramientas se utilizan para cortar las roscas de los tornillos y ofrecen roscas precisas.

Herramienta de separación: Es una herramienta que ayuda a cortar un componente acabado de la pieza de trabajo y también tiene una cuchilla estrecha que separa el componente del bloque de materiales.

Herramienta de ranurado: La herramienta de ranurado ayuda a cortar canales en la superficie de la pieza, y normalmente se prefieren las juntas tóricas.

Herramienta de conformado: La herramienta de conformado opta por el mecanizado de formas de geometría compleja en las piezas.

¿Cuándo utilizar el mandrinado o el torneado?

A la hora de elegir entre mandrinar o tornear y qué utilizar de estos procesos de mecanizado, esta sección le ayudará.

Tipo de material

Hierro fundido

El mandrinado es un proceso adecuado para materiales duros como el hierro fundido y el acero. El proceso de torneado es versátil y puede trabajar tanto con materiales duros como blandos.

Geometría de la pieza

El mandrinado es un proceso adecuado para el mecanizado interno, como la ampliación y el acabado de los orificios previamente perforados. El torneado, por su parte, es adecuado para dar forma al diámetro exterior de componentes que tienen forma cilíndrica.

Acabado y precisión deseados

Piezas de fundición a medida

El mandrinado ofrece una gran precisión y el acabado superficial es excelente para los orificios internos. Por lo tanto, se adopta ampliamente para aplicaciones que necesitan tolerancias estrechas.

El torneado, por su parte, ofrece una gran precisión para las superficies externas. Puede ayudar a conseguir un acabado superficial moderado y requiere un procesamiento secundario.

Velocidad frente a precisión

El mandrinado es un proceso lento, pero está más controlado y ofrece precisión para los diámetros internos de los componentes. El torneado, por su parte, ayuda a eliminar el material de la pieza exterior más rápidamente, pero también puede ofrecer precisión.

Conclusión

A la hora de comparar el mandrinado y el torneado, ambos procesos tienen sus pros y sus contras. Sin embargo, pueden elegirse en función de sus propias necesidades y de si necesita acabar la parte interior del componente o las características exteriores.

Si desea ayuda con los procesos para sus componentes personalizados, DEK puede ser su solución.

The robotics industry is leading as the most prominent one these days because of the advancement it offers. However, when it comes to manufacturing robotics components, versatile materials are used.

Some of these main materials used in robotics are discussed in the guide below.

Metals and Alloys

The different types of metals and alloys used for manufacturing robotic components are as follows:

Acero inoxidable

Principales materiales utilizados en la industria robótica: Guía útil

Acero inoxidable is used in robotics due to its properties. It offers durability, and it is suitable for use in harsh conditions. The material ensures corrosion and temperature resistance and can be suitable for machining as well.

Components like gears, frames, and motor parts used in robotic systems are manufactured using stainless steel.

Aluminio

Principales materiales utilizados en la industria robótica: Guía útil

Aluminio is used in many industries because of the light weight it possesses. It also offers high resistance against heat and is weldable. Hence, robotic components can be manufactured using an enhanced surface finish and corrosion resistance.

The components for robots manufactured using aluminum are wheels, bearings, and enclosures.

Titanio

Principales materiales utilizados en la industria robótica: Guía útil

Titanio is used in robotics because it has a high melting point and is biologically inert. It even offers corrosion resistance. However, it is very expensive and requires specialized equipment for welding and casting.

Hence, it is only used for lightweight and strength-oriented components.

Copper, Brass, and Bronze

Principales materiales utilizados en la industria robótica: Guía útil

Cobre and brass are used in robotic systems because they offer excellent electrical conductivity and resistance against corrosion.

Copper can be chosen for wiring, and brass can be chosen for mechanical parts. Bronze is selected for low friction properties and hence can be a stable material for harsh environments.

Plásticos y polímeros

The different types of plastics and polymers commonly used in robotics are as follows:

Acetal

Principales materiales utilizados en la industria robótica: Guía útil

Acetal is a lightweight plastic that has excellent dimensional stability and low friction. It is used in robotics to manufacture components like casing, frames, and housings.

ABS Plastic

Principales materiales utilizados en la industria robótica: Guía útil

ABS plastic is used in robotics for flexibility, strength, and mold capability. It is used for manufacturing structural components which do not add weight to the robotic applications. The components manufactured are enclosures, housings, and other components.

Nylon

Principales materiales utilizados en la industria robótica: Guía útil

Nylon is a material offering versatility due to its excellent strength and wear resistance. It is used for components of the robots that move like bearings and gears. It has low friction and is also known for self-lubricating properties.

Polietileno

Principales materiales utilizados en la industria robótica: Guía útil

Polietileno has high impact resistance and chemical inertness.it is also flexible and lightweight hence opted for sliders and bushings. It also resists chemicals and moisture and can be used in moisture-oriented environments.

Materiales compuestos

Robotic components are also made using different types of composites, and some of them are as follows:

Kevlar

Principales materiales utilizados en la industria robótica: Guía útil

Kevlar is a synthetic fiber, and it offers a layer of protection that helps the robots deal with different environmental conditions like extreme heat, cold, and pressure. Kevlar is mostly used to cover the robotic arm.

Fiberglass and Carbon Fiber

Principales materiales utilizados en la industria robótica: Guía útil

Fiberglass and carbon fiber are chosen for their high strength. These materials are mostly used for manufacturing insulation, structural panels and housings for robots.

They help with the high performance of the components to enhance the durability and strength of the robots. It is also a lightweight material.

Filled Plastics

Principales materiales utilizados en la industria robótica: Guía útil

Filled plastics are polymer materials that have fillers like carbon fiber or glass fibers so that the mechanical properties can be enhanced. These materials can make the robotic components strong.

They also enhance dimensional stability and heat resistance. They are suitable for housings, robotic arms, and gears.

Elastomeric Materials

The elastomeric materials usually used on robotic components consist of rubber.

Goma

Principales materiales utilizados en la industria robótica: Guía útil

Rubber is a very important material used in robotics as it is flexible and offers elasticity. Rubber also has the ability to absorb vibrations and shocks and hence is used in wheels, grips, and gaskets.

Unique/ Innovative materials

Some unique materials used for manufacturing robotic parts are as follows:

PCL

Principales materiales utilizados en la industria robótica: Guía útil

Polycaprolactone is a polyester that has a low melting point and is biodegradable. It is used in manufacturing custom components, which consist of sensors, robotics, and some fixtures. They can opt for such components that require reshaping at low temperatures.

Bioplastics

Principales materiales utilizados en la industria robótica: Guía útil

Bioplastics are environment-friendly materials that are obtained from sources like sugarcane, corn scratch, and potato scratch.

They are used in robotics because of their environmental friendliness. They can opt for components like housings, panels, and structural components.

Conclusión

When it comes to manufacturing different types of robotic components using versatile materials, we at DEK offer you a variety of options. We will discuss your requirements and then suggest the material suitable for your robotic component.

Metalloids are highly common elements found in the periodic table between metals and non-metals. These materials are used in many applications and have unique characteristics.

If you are planning to use them in your applications and want to learn more about the properties of metalloids, the guide below can help you. So, let's read.

What are Metalloids?

Metalloids are defined as chemical elements that have chemical as well as physical properties somewhere between metal and non-metals.

There are different types of metalloids with unique characteristics. The metalloids are in the p-block of a periodic table and are present between the metals and non-metals.

What are the Typical Elements of Metalloids?

The different elements which fall under the category of metalloids are as follows:

Boron (B)

Boron

Boron is a metalloid that has an atomic number of 5, and it is used in chemical compounds widely. Boron has a crystalline form and a black color; it is a very hard metal.

It is used for hardening glass and steel. Boron-based components like fertilizers and insecticides are used for plant growth.

Arsenic (As)

Arsenic

Arsenic is a risky element that can interfere with humans' respiration process. It has an atomic number of 33.

It can form 3 covalent bonds with metales and is toxic for plants as well as animals. It is used to harden metal alloys and leads. It is also used as an insecticide.

Silicio (Si)

Silicio

Silicon is a versatile metalloid that is very common in the construction industry and also in semiconductors.

It has an atomic number of 14 and is very reactive, commonly found in soils, sand, and rocks. It is a poor electrical conductor and is used in manufacturing enamels, glass, ceramics, and semiconductors.

Antimonio (Sb)

Antimonio

Antimony has 51 as its atomic number and is used in paints and alloys. It has a metallic appearance in silver-white. It is brittle and hard in nature. It is a poor electrical conductor and is used in semiconductors in the form of a dopant and also for manufacturing enamel and glass.

Tellurium (Te)

Tellurium

Tellurium is an alloying element that has 52 as its atomic number. It is found in mined ores and has a brittle nature. It dissolves in nitric acid and remains insoluble in water. It makes the alloys resistant to corrosion.

Germanium (Ge)

Germanium

Germanium is used in transistors and has an atomic number of 32. It has a metallic look and is brittle in nature. It offers poor electrical conductivity and enhances the corrosion resistance of alloys. It is also used in detectors, which are made using infrared and even semiconductors.

Physical Properties of Metalloid

The physical properties of metalloids are highlighted in the section below.

Appears to Have Metallic Luster

Metalloids have a look that is similar to metals– they have a reflective and metallic surface.

Boiling and Melting Points

Metalloids are solid when at room temperature.

Metalloids Melting Points
Germanium 938.3
Silicio 1410
Arsenic 817
Boron 2079
Antimonio 631
Tellurium 449.5

Densidad

The density of metalloids varies from one another but is less than that of metals and more than non-metals.

Conductividad eléctrica

Conductividad eléctrica

Metalloids can work like insulators as well as conductors. They can be modified as per requirements.

For instance, when used for semiconductors, they pass through the process of doping. It is the process in which impurities are added to the metalloids to alter their properties. However, they are still not as conductive as metals in electricity.

Allotropes

Most of the metalloids can offer different allotropic forms as they have different physical properties. The three common allotropes of arsenic are gray, yellow, and black.

Conductividad térmica

Conductividad térmica

The thermal conductivity of the metalloids varies from element to element. They generally have lower thermal conductivity than metals and higher thermal conductivity than nonmetals.

Fragilidad

Metalloids are prone to cracking and deforming due to their brittle nature.

Dureza

Dureza

Metalloids have variable hardness, with arsenic having a hardness of 3.5, whereas boron has a hardness of 9.3.

Chemical Properties of Metalloids

The chemical properties of metalloids compose the following:

Reactivity with Nonmetals

Metalloids are reactive and can easily gain and lose electrons so that they can form ions which can be negatively or positively charged. They also combine with non-metals to form compounds.

Oxidation States

The oxidation states of metalloids vary and are featured in the table below:

Metalloid Oxidation State
Silicio +4, 0
Germanium +2, +4
Arsenic +3, +5
Boron +3, +2, +1
Antimonio +3, +5
Tellurium +4, +6

Moderate Ionization Energy

Metalloids have moderate ionization energy, which ranges around 200 kcal/mol.

Intermediate Electronegativities

Metalloid Electronegativity
Silicio 1.9
Germanium 2.01
Arsenic 2.18
Boron 2.04
Antimonio 2.05
Tellurium 2.1

Covalent Bonds

Metalloids are known to create covalent bonds. However, they do not make monoatomic ions similar to metals.

Formación de aleaciones

Metalloids are very commonly mixed with other elements to form alloys.

Reactivity with Acids

Reactivity with Acids

Metalloids have less reactivity with acids. For example, germanium and silicon are insoluble and do not react with acids. Arsenic and antimony react with strong acids.

Known as Amphoteric

Metalloids have properties of both metals as well as non-metals, which makes them known as amphoteric.

Applications of Metalloids

Semiconductores

Metalloids have various applications, and some of these are discussed below:

Semiconductors: In semiconductors, germanium and silicon are used, and they can be used in computer chips, integrated circuits, and even solar cells. They have semiconducting properties, which is why they play a crucial role in electronics.

Ceramics and Glass: Arsenic, boron, and silicon are commonly used in cerámica and glass as they can work like a refractory agent. Borosilicate glass is also made using them as it can resist chemicals as well as thermal shock.

Alloys: Many alloys also have metalloids to enhance their properties. For instance, silicon is added to aluminum so that it can have more castability and strength. In steel, boron is added to enhance its hardness.

Photovoltaics: Solar cells and some metalloids, like germanium and silicon, are used to help convert sunlight into electricity.

Flame Retardants: Boron compounds, antimony trioxide, and aluminum trihydrate are used to work as flame retardants in many coatings, plastics, and building materials. They help with fire safety.

Distinguishing and Most Useful Properties of Metalloids

metals, nonmetals, metalloids

The distinguishing properties of each metalloid and its applications are discussed below:

Boron: It is hard and resistant to heat; it is used in combination with silicon to create a glass that can resist thermal shock.

Germanium: Germanium is brittle and hard and very rarely used in semiconductors.

Silicon: Silicon is a shiny and gray metalloid that is used in semiconductors.

Tellurium: It has a brittle nature and enhances machinability when combined with steel.

Arsenic: It is a poisonous metalloid and is used in insecticides.

Antimony: It is brittle and hard, is alloyed with lead, and is even used for manufacturing paints.

Differences Between Metalloids, Metals, and Nonmetals

Propiedades Metales Non-Metals Metalloids
Ductilidad Ductile Brittle Brittle
Densidad Alta densidad Low Density Moderate Density
Conductividad eléctrica High electrical conductivity Poor electrical conductivity Intermediate electrical conductivity
Apariencia Metallic luster Dull surface Some have a metallic luster
State at Room Temperature Solid Solid Solid

Reflexiones finales

When it comes to choosing between metals, non-metals, and metalloids, understanding their properties is crucial. The guide above must have made you understand everything about metalloids and their applications.

If you are planning to have some components manufactured using any material, we at DEK puede ayudarte.

Preguntas frecuentes

What composed metalloids?

Metalloids are neither metals nor non-metals but are in the middle of both having combined properties.

How can metalloids be identified?

Metalloids can be identified by looking at their properties. They have a brittle nature and lustrous appearance and stay solid at room temperature.

Can mercury be classified as a metalloid?

No, mercury cannot be classified as a metalloid.

What elements belong to the metalloid group, and how are they used?

The elements in the metalloid group consist of arsenic, boron, antimony, silicon, tellurium, and germanium. They are used in various applications, such as fertilizers, insecticides, and semiconductors.

Automation is taking a lead in almost every sector and the major benefits are enjoyed by the manufacturing industry. CNC robotics have now made the process of precision machining very simple and quick.

The guide below explores everything about CNC robotics in detail, so let's read below to learn more.

What is CNC Robotics?

CNC robotics is a robotic method that improves and helps to boost the CNC machining process. A CNC robot is a very advanced invention that is designed for machining.

It is a type of equipment that looks after the entire project on its own using the protocols programmed. These machines do not wait for any input from the operator.

It offers various advantages to the manufacturing process and helps to manufacture a high volume of products in less time.

Why Choose CNC Robotics for Producing Robotic Parts?

There are multiple reasons that make CNC robotics a suitable method for producing robotic parts, and these are discussed below:

Increased Speed

efficiency, quality, speed, cost

CNC robotics is known to produce parts in a very short time. The process of machining is very fast and versatile enough to machine complex components. Custom robotic parts can be manufactured using CNC robotics in very little time.

Compatibilidad de materiales

CNC robotics, when used for robot parts, offers high compatibility with materials. It can work with a wide range of plastics as well as metals.

These parts are meant to move and lift items, which requires them to be strong and stiff. Hence, CNC robotics are suitable for manufacturing robotic parts as they work very well with different materials.

Acabado superficial

Amoladora de superficies

CNC robotics exercises a lot of control while machining a surface and hence creates components with excellent surface finish.

The components of robots are not only precise but also capable of going through surface finishing operations if needed.

Accuracy & Precision

CNC robotics can help create components that are the same as the specifications required. The precision of CNC robotics is very high, which makes it a suitable option for machining robotic components.

Rentable

Costes

It is a highly cost-effective process that is equipped with multiple tools. It is versatile and takes very little time to manufacture components. Hence, the one-time investment in the machine later on will offer high affordability in the long run.

Greater Complexity

Components of complex geometries and shapes are manufactured using CNC robotics. The parts that have slots, curves, and pockets can be matched very easily through the process of CNC tools; even the holes can be drilled.

CNC Machines vs CNC Robotics

CNC Robotics: Automated Robots and CNC Machining

Mecanizado CNC and CNC robotics are different in many ways, and these processes can be compared in detail. Some of these comparisons are discussed below.

Types of CNC Robots Available in Different Industries

There are various types of CNC robots, each with unique capabilities. The common ones are discussed below.

Cartesian Robots

Cartesian Robots

Cartesian robots are linear robots that work on their axis, namely x, y, and z of the cartesian system. These are used because they offer highly flexible configurations and can be modified in terms of size, precision, and speed.

These robots have a high range and are large in size, which makes them suitable for heavy workpieces. These robots are used in the assembling process, material handling, pick and place, loading and unloading, screw driving and fastening, packaging, etc.

Articulated Robots

Articulated Robots

Articulated robots have rotary joints; they possess 2 to 10 axes and offer excellent freedom of motion. They are suitable for handling multiple types of pieces in varied sizes and can be used for versatile applications.

The process of material handling, assembling, arc welding, machining, loading, and packaging are the common applications.

SCARA Robots

SCARA Robots

SCARA robots have four axes and can work on high-speed and repeatable operations. These robots work like human arms but at great speed and precision.

These robots improve the productivity of the process, reduce the cost, and ensure the safety of the workers. These robots conduct the tasks of assembling, picking and placing, packaging, machining, and inspection.

Collaborative Robots

Collaborative Robots

Collaborative robots are suitable for performing repeated tasks, and they can conduct multiple processes in no time with enhanced productivity.

These robots tend to perform tasks like loading, unloading, assembling, etc. They work in collaboration with the staff.

Delta Robots

Delta Robots

Delta robots are the types of robots that are used in applications associated with high speed. These are usually attached to work areas at the top to conduct tasks like assembling, sorting, picking and placing, disassembling, packaging, and sorting.

Common Robotic Parts Used in CNC Robotics

There are different types of robotic parts that are used in CNC robotics, and some of these are as follows:

CNC Robotic Arm

CNC Robotic Arm

A CNC robot arm is the most important part of CNC robotics machining because it helps perform operations. It is used in many industries, and it is made using materials that are high-strength, like some high-end plastics, steel, and aluminio.

End Effectors

End effectors are such devices attached to the robotic arm ends so that the robot can perform multiple tasks. These end effectors have different functional vacuums, followed by grabbers and grippers, which help to conduct different operations.

Custom Jigs and Fixtures

Custom Jigs and Fixtures

Robotic operations need jigs and customized fixtures to hold the workpieces. These fixtures also help to locate the workpiece in a precise way every time. They are highly cost-effective and conduct different processes during machining.

Sensors and Controllers

Robots consist of sensors and controllers. These also include PCBs, which help them perform their operations. CNC robotics can be used to manufacture these components using different shapes and sizes without the need for chemical etching.

Will CNC Robotics Replace CNC Machines?

CNC Robotics: Automated Robots and CNC Machining

CNC manufacturing robotics also offers versatile advantages, but it can't match the speed and precision of the CNC machines that are present in the modern world.

Robots offer high versatility, but CNC machines offer a high specialization in fabricating components of specific types of parts.

The accuracy of the CNC milling and lathe machining is commendable and cannot be matched by robots also due to their low rigidity.

Although the demand for CNC robotics is growing, they cannot replace CNC machines entirely due to some limitations. Hence, they can work in collaboration with CNC machines.

DEK - CNC Machining Services for Your Robotic Parts

Nosotros en DEK are well-equipped with highly specialized and innovative CNC machines that help us manufacture robotic parts for your projects.

So, if you are looking for high-quality, precise robotic parts customized as per your requirements, get in touch with us, and we will manufacture them for you.

Conclusión

The guide above has a detailed discussion of CNC robotics and its comparison with CNC machining. As you have gone through it, you must have understood it in detail. It will help you have the components designed by having a thorough understanding of it.

El proceso de fabricación de componentes mediante mecanizado requiere una evaluación de la maquinabilidad. La maquinabilidad es el concepto de materiales que se pueden procesar convenientemente. Requiere evaluar varios factores cuando se selecciona el material.

La siguiente guía es para ti si estás empezando un nuevo proyecto y quieres aprender sobre la maquinabilidad de los materiales. Así pues, leamos.

¿Qué es la maquinabilidad de un material?

La maquinabilidad de los materiales es la conveniencia de mecanizar un material de modo que se consiga la calidad requerida del componente. En cuanto a la calidad de la pieza, hay que analizar el acabado superficial, la tolerancia y la precisión dimensional.

Los materiales altamente mecanizables requieren menos tiempo y energía, por lo que el desgaste de la herramienta también es menor. Estos materiales generan componentes que tienen un acabado superficial refinado.

Comprender los índices de maquinabilidad

Comprender los índices de maquinabilidad

Existen muchos materiales y, entre ellos, seleccionar el adecuado en términos de maquinabilidad puede ser un reto para los ingenieros. Por eso, al analizar los materiales adecuados, se tienen en cuenta los índices de mecanizabilidad.

Las clasificaciones de maquinabilidad tienen una característica estándar en la que se considera el material de referencia por conveniencia. Por ejemplo, el grado de latón C36000 tiene un índice de maquinabilidad 100%. Cuando los materiales se vuelven difíciles de cortar, la clasificación de maquinabilidad que poseen se reduce.

¿Cómo mejorar la maquinabilidad de los materiales?

Con el fin de mejorar la maquinabilidad de los materiales, algunas de las formas que pueden considerarse son las siguientes:

Aditivos materiales

Los aditivos de materiales mejoran la maquinabilidad de los materiales modificando su estructura reticular y mejorando sus propiedades mecánicas. Por ejemplo, las aleaciones de cobre se enriquecen con zinc para mejorar su mecanizabilidad.

Tratamiento térmico

Tratamiento térmico

Tratamientos térmicos como el recocido del aluminio y el acero tienden a reducir su dureza, lo que los hace más mecanizables. Mejora la estructura del grano y también libera tensiones internas, lo que facilita el mecanizado de los materiales.

Refrigerante/Lubricante

Las condiciones de corte pueden optimizarse para que el material sea más mecanizable, como el uso de refrigerantes y lubricantes. El uso de lubricantes tiende a reducir la fricción, y el desgaste de la herramienta también disminuye. Del mismo modo, el refrigerante ayuda a disipar el calor y reduce el estrés térmico.

Optimización de los parámetros de corte

Optimización de los parámetros de corte

La selección correcta de los parámetros de corte también influye en la maquinabilidad de los materiales. Cuando se considera una velocidad y un avance elevados, la maquinabilidad disminuye. Mientras que cuando se reduce la velocidad y avancela maquinabilidad aumenta.

Factores externos

Aunque no desee cambiar el material de la pieza, puede ajustar los demás factores, como la velocidad, el ángulo y el estado de funcionamiento de la herramienta de corte. Esto facilita el corte de materiales difíciles de mecanizar.

Factores que afectan a la maquinabilidad

Hay varios factores de los que depende la maquinabilidad, y algunos de estos factores que afectan a la maquinabilidad son los siguientes:

Propiedades de los materiales

Propiedades de los materiales

Las propiedades de los materiales influyen en mayor medida en la maquinabilidad, y algunas de estas propiedades son las siguientes:

Dureza del material

La dureza del material determina la maquinabilidad. Los materiales duros son difíciles de mecanizar. Estos materiales necesitan más potencia y la herramienta tiene que ejercer una gran fuerza, lo que provoca un rápido desgaste de la herramienta.

Dureza

La tenacidad también es un parámetro muy importante para determinar la mecanizabilidad. Los materiales que tienen una dureza elevada son los que necesitan más fuerza de corte, como el acero al carbono, que no es mecanizable.

Además, estos materiales producen incluso muchas virutas, que se enredan en la herramienta y desgastan su superficie.

Resistencia a la tracción

Si la resistencia a la tracción del material es alta, dificulta su mecanizado. Consumen mucha energía y resisten la deformación, lo que provoca problemas durante el mecanizado.

Propiedades térmicas

La capacidad de disipación del calor del material también determina su mecanizabilidad. Algunos materiales son muy blandos y no pueden soportar el calor, lo que dificulta su mecanizado.

Condiciones de mecanizado

El comportamiento del material cuando se corta también influye en la maquinabilidad. Algunos de estos factores se comentan a continuación.

Parámetros de corte

Parámetros de corte

Los parámetros de corte se componen de avance, profundidad de corte y velocidad. Es esencial optimizarlos para conseguir un mecanizado mejorado. Cuando se cortan materiales a alta velocidad, el material ofrece menos mecanizabilidad. Del mismo modo, la profundidad de corte también desempeña un papel importante, ya que una profundidad elevada repercute en la integridad de la superficie.

Herramienta de corte

Mecanizado CNC tiene fresas que influyen en la maquinabilidad. La resistencia y el filo de la fresa son vitales. El ángulo de corte conduce incluso a mejorar la formación de viruta y debilita las herramientas.

Refrigerante y lubricante

Refrigerante y lubricante

La aplicación de lubricantes y refrigerantes mejora la maquinabilidad de los materiales. El calor se disipa y aumenta la fricción. Ayuda a mejorar el acabado superficial y suaviza el proceso de corte.

Estado de la máquina herramienta

El estado de la herramienta también determina la maquinabilidad. Las máquinas más antiguas presentan más vibraciones cuando se someten a cargas de corte dinámicas, lo que dificulta el corte de los materiales.

Materiales típicos con excelente maquinabilidad

En la tabla siguiente figuran los materiales que ofrecen una alta maquinabilidad.

Material Maquinabilidad
Aluminio 90-95%
Acero 30-40%
Plásticos 70-90%
Otros metales:

Titanio

Latón de corte libre

Magnesio

20-25%

100%

50-55%

¿Cómo medir la maquinabilidad de los materiales?

Cómo medir la maquinabilidad de los materiales

Hay varios factores que afectan a la maquinabilidad de los materiales. Existen diferentes formas de medir la maquinabilidad de los materiales. Parámetros como el consumo de energía, la vida útil de la herramienta de corte y el acabado superficial ayudan en esta medición.

Sin embargo, no son medios de medición totalmente fiables. La AISI ha creado un sistema de clasificación basado en ensayos de torneado. Dichas calificaciones se expresan en forma de porcentajes.

Procesado eficiente de piezas difíciles de mecanizar por DEK

DEK ofrece el mecanizado de materiales de varios tipos utilizando su experiencia y herramientas avanzadas. Por lo tanto, si hay materiales difíciles de mecanizar pero que son un requisito integral de su proyecto, póngase en contacto con nosotros. Le ayudaremos a fabricar estos componentes con alta calidad, precisión y acabado superficial.

Conclusión

La maquinabilidad es uno de los aspectos más cruciales de la fabricación, independientemente de la industria para la que se necesite el componente. La necesidad de mecanizado es esencial para conseguir la forma deseada.

Mechanical testing is used to evaluate product designs. It is also used for validation, identification, and characterization of the products. Mechanical testing allows manufacturers to ensure that they are utilizing material appropriately and that the process is safe and cost-effective.

If you want to learn more about what is mechanical testing, the guide below is for you.

What is Mechanical Testing?

Mechanical testing consists of a series of standardized tests that help determine the properties of the material. It also helps in testing whether a particular material is suitable for the given applications or not.

Mechanical testing is a very important aspect of the manufacturing process to achieve some standards set by ISO and ASTM. These tests help manufacturers determine which materials are high quality and choose the appropriate ones.

¿Cómo funciona?

Mechanical testing processes can help determine the material properties when the load is applied to them. It is a very crucial part of the manufacturing process. The material is subjected to load, and the deformation is assessed. Different types of tests are conducted to verify the material properties.

Types of Mechanical Testing

There are different types of mechanical tests to verify the material properties, and some of these are as follows:

Tensile Testing

What is Mechanical Testing: A Detailed Guide

Tensile testing helps determine the strength of the material and assess its properties, such as yield deformation, strain, and stress. The material is subjected to a given force and is pulled from the two ends till it breaks.

This testing is done in a testing machine that works either by electric or hydraulic system. The data is recorded at different forces. The standards for tensile testing are ASTM D412, ASTM D638, ASTM E8, ISO 37, ISO 527-2, etc.

Pruebas de dureza

Hardness testing assesses the hardness of a material. This test is conducted on the material only and not on the final product. The different types of hardness tests are the Brinell test, Rockwell test, and Vickers test. These tests help analyze surface hardness.

These tests are conducted with indenters to create an indentation on the material’s surface. The depth and force of the indentation help collect the data for the hardness test.

Pruebas de impacto

What is Mechanical Testing: A Detailed Guide

Impact testing is a type of mechanical testing that analyzes the amount of high-impact load a material can take. It allows the impact loads to be applied with a high force multiple times for a longer span of time to analyze the material’s strength.

Pruebas de fatiga

Fatigue testing is suitable for products that undergo cyclic loading. Components with dynamic mechanical loads need this type of testing, which changes their direction and magnitude now and then.

Fatigue testing helps to consider parameters consisting of the number of cycles and their frequency followed by the types of load.

Fracture Toughness Testing

What is Mechanical Testing: A Detailed Guide

Fracture toughness testing allows manufacturers to analyze the amount of energy required to break the material that has a crack already. The manufacturers can ascertain the ability of a material to resist the fracture using an intrinsic stress factor. The standards for this type of test are ASTM E1280 and EEMUA pub. 158, BS 7448, etc.

Compressive Testing

Compressive testing determines the material’s behavior, which is subjected to loads that end up crushing them. It is a very important manufacturing part as the material has to pass through different phases. This test is compatible with a wide range of materials, including plastics, metals, and ceramics.

Pruebas de torsión

What is Mechanical Testing: A Detailed Guide

Torsion testing carries out an evaluation of the way a material behaves when subjected to angular stress. It helps to measure properties like durability, shear yield strength, and shear modulus. There are different types of torsion tests, and these are as follows:

Creep Testing

Creep testing is a test that consists of subjecting the material to consistent stress for extended temperature, and the data is recorded. This test helps to analyze the material’s ability to deform when subjected to constant stress at a given temperature. It is suitable for materials like soldered joints, metal workings, and springs.

Resistencia a la corrosión

What is Mechanical Testing: A Detailed Guide

Corrosion resistance tests are meant to determine the reaction of materials when subjected to different conditions, including saline and non-saline. These tests have different techniques, which are as follows:

Non-destructive Testing

Non-destructive testing is conducted without causing any damage to the material. Some of these methods are the following:

Why Should You Invest in Mechanical Testing?

The success of the manufactured components depends on the quality of the materials used. The assessment of those materials relies on mechanical testing. Hence, there are many reasons to invest in mechanical testing, and some are discussed below:

Internal Audit

What is Mechanical Testing: A Detailed Guide

The internal audit in the process of manufacturing and product design helps manufacturers assess the material and processes and ensure it meets international standards.

The internal audit can detect whether the materials used in the manufacturing process pass the tests for international standards or not. If they don’t, the manufacturer can opt for an alternative solution.

External Audit

External audit is a process in which the organization conducts the testing of the products of another organization. It helps to test the quality of the product and ensure that it adheres to international standards. The materials that do not pass through the mechanical tests fail the external audit and lead to a waste of resources and time.

Increased Costs

Costes

The use of inferior quality materials leads to wastage, and the product’s authenticity is also questionable. Moreover, the products can be over-engineered, which increases production costs. Hence, the production cost can be reduced when the right material is chosen.

Product Failure

Product failure is one of the costly consequences of not considering mechanical testing. It leads to product damage and may also lead to legal consequences. It doesn’t take place if the internal and external audits are done, but there could be a problem during auditing.

Possibility of a Future Failure

In case the product fails during the testing process, the failure analysis can help predict that it will fail in the future as well. It helps to inspect the file aid part and think about its improvement.

Why is Mechanical Testing Important for Materials?

What is Mechanical Testing: A Detailed Guide

Mechanical testing is very important to understand the way materials will work when subjected to real world stress. By evaluating the material properties like ductility, toughness, strength, and hardness, the material can be assumed to adhere to specific standards.

Industries like automotive, aerospace, and construction are sensitive, and there is no margin for using inferior quality material.

Mechanical testing not only helps ensure the reliability of the product but also allows engineers to create product designs by analyzing their lifespan. The costly failures are prevented, and the performance of the parts is optimized.

Is Industrial Mechanical Testing Important?

Is Industrial Mechanical Testing Important

Structural integrity testing is very important to ensure the cost-effectiveness and safety of the process. Fabricantes need mechanical testing to ensure the product’s quality, their reputation is preserved, and their production cost is reduced. The material dealers also adhere strictly to international standards so that their credibility is maintained.

The customers are also assured and relieved that the materials have undergone mechanical testing, which will prevent the risk of failure and ensure safety.

Ensuring Quality of Your Parts: DEK Can Help

The quality of components is crucial in every industry. If you are also looking to manufacture custom components that have passed mechanical testing, you can contact DEK. We always conduct mechanical tests for all the components we manufacture and ensure their materials are high quality.

Conclusión

Mechanical tests are important aspect of manufacturing. It is crucial to have a detailed understanding when it comes to conducting these tests. The information from this guide will help you make the most of the testing processes for your projects.

Preguntas frecuentes

Which is the most used mechanical test?

Tensile testing is a very common method. It allows the manufacturers to have an idea of the strain and stress that the material can handle.

What is material testing, and what is its role in the industry?

Material testing helps to differentiate between real and fake materials by testing their properties before using them in your products.

When should mechanical testing be done?

Mechanical testing is carried out to test the material quality and properties in a specific environment.

DEK
Protección de datos

Este sitio web utiliza cookies para que podamos ofrecerle la mejor experiencia de usuario posible. La información de las cookies se almacena en su navegador y realiza funciones como reconocerle cuando vuelve a nuestro sitio web y ayudar a nuestro equipo a comprender qué secciones del sitio web le resultan más interesantes y útiles.