Components, once manufactured, are passed through different surface finishing processes, for which chrome plating is also opted.
These surface finishing processes always enhance the durability and look of the component. If you want to learn about chrome plating, you can go through this guide below.
What is Chrome Plating?
Chrome plating is a method in which a layer of chromium is applied to a metal through electroplating. This process improves the durability and toughness of the component and also makes it corrosion-resistant.
The Chrome Plating Process
Chrome plating is a step-by-step process, and the section below details it.
- The first stage involves cleaning the component by degreasing it using an abrasive cleaner. It helps eliminate dirt, grease, or any other impurity on the surface.
- The component to be chrome plated is mounted on a fixture that can conduct electricity, and it is connected to the circuit for the process.
- An electro-cleaning solution is added, and the component is submerged in it. The component is then connected to the power supply. When the current passes, the residual impurities are removed.
- The component is then introduced to a chromic acid bath in the presence of electricity, and chromium ions deposit on the surface, creating a chrome layer.
- The component is then rinsed so that any residue of the chemicals is removed.
- The chrome-plated component is then polished and buffed to achieve the desired finish and is inspected thoroughly.
Benefits of Chrome Plating
Chrome plating offers versatile benefits, and some of these benefits are as follows:
- Hard chrome plating offers hardness, which is more than metallic coatings, and can withstand high stress.
- The addition of a thick layer of chromium plating protects the components from wear and tear when they are exposed to chemicals.
- Hard chrome plating, when it comes in contact with graphites, metals, and polymers, tends to have less friction and hence is suitable for moving parts.
- When the chrome plating gets damaged, it can be replaced easily and the lifespan of the parts can be enhanced.
Key Types of Chrome Plating
There are different types of chrome plating, and some of these are as follows:
Hard Chrome Plating
Hard chrome plating is the application of a thick chromium layer to the steel component. This electroplating process involves submerging the component in chromic acid and depositing a layer of chrome.
Hard chrome plating enhances the life of the components and enhances their resistance against corrosion. It even helps with oxidation resistance and chemical inertness.
Decorative Chrome Plating
Decorative chrome plating, as the name suggests, enhances the aesthetic beauty of the components. It is a thin layer and, hence, less durable.
The process of decorative chrome plating starts with nickel electroplating and sometimes even copper plating. It adds smoothness and reflectiveness before the chrome plating.
Thin Dense Chrome Plating
Thin dense chrome plating is a coating that is used in manufacturing applications.
The chromium material is electroplated on the components and has a surface texture that is microcracked and micronodular. This coating enhances the life and operational efficiency of the components.
Suitable Materials for Chrome Plating
Chrome plating can be carried out on various materials, but the main materials usually opted for chrome plating are as follows:
Aço
Aço is a very common material which is used in different industries. After adding a layer of chrome plating, the steel components became durable, and resistant to wear and corrosion.
Alumínio
Aluminum is mostly chosen because it is strong and lightweight. Therefore, in heavy-duty applications, aluminum proves to be a suitable choice.
When aluminum components are chrome-plated, they become resistant to corrosion and durable. Automobile parts like wheels and trims, and even aerospace components made using aluminum, are chrome-plated.
Plásticos
All types of plastics are not good conductors of electricity, but some of them, like ABS, can be chrome plated. It is used in the electronics and automobile industry and can offer a metallic look, being lightweight due to chrome plating.
The interior and exterior of cars and various household items manufactured using ABS are chrome plated.
Applications of Chrome Plating
Chrome plating is observed in different industries, and some of these are as follows:
Indústria automóvel
Chrome plating is used in the automotive sector for functional and decorative purposes.
The components of vehicles, like trims, grilles, bumpers, and exhaust, are all chrome-plated. The reason behind their chrome plating is to enhance the resistance against wear and tear and give them a shiny look.
Indústria aeroespacial
The aerospace industry needs strength-oriented components that are heat-resistant and lightweight. Hence, aluminum and steel, which can be chrome-plated, are commonly used in this industry.
The chrome-plated aerospace components can resist friction and corrosion and even withstand stress. Components like engine parts, landing gear, and hydraulic systems are chrome-plated.
Indústria médica
Chrome plating is also used to add a protective layer to medical components and surgical tools. It helps to enhance the durability and sterilization of these components.
The chrome-plated tools are highly corrosion-resistant and can withstand chemical use and sterilization.
Conclusão
The finishing process of chrome plating gives the components new life and protects them with a protective layer. These components have a durable life span and can be used for different applications.
Start Your Chrome Plating Project with DEK
Are you starting a new project requiring chrome plating on the components? DEK can be your go-to choice as we offer high-quality secondary finishing processes, and chrome plating is also one of them.
So, give us a chance to enhance the properties of your components by adding a chrome layer to them.
FAQs
Is chrome plating expensive?
Compared to other electroplating processes, chrome plating is a little expensive as it is a complex process.
How to remove chrome plating?
Chrome-plated components can be submerged in hydrochloric acid to remove the plating.
How is chrome plating done on aluminum?
Aluminum components are first copper-plated and then subjected to the chromium-plating process.
What’s the difference between hard chrome and decorative chrome plating?
Hard chrome plating is thick and focused on the performance and function of the component. Decorative chrome plating is thinner and less durable. It enhances the look and aesthetics of the parts.
What types of chrome plating should you choose?
Every type of chrome plating has a different purpose. The decorative chrome plating is used for coating the decorative components whereas the hard chrome plating is used for a durable life.
Based on your application requirements, you can choose the type of chrome plating.
Are you planning to start a new project with glass-filled nylon and want to learn about it? You are at the right place then.
Glass-filled nylon is a material used in different applications for its versatile characteristics. This guide below has the answers to all your questions about glass-filled nylon, so let's read.
What is Glass Filled Nylon?
Glass filled nylon is a combination of nylon and glass. It is nylon with glass reinforced on it. It is known for various properties found in glass and nylon. It exhibits mechanical damping followed by excellent creep resistance.
It is also opted for the improved heat distortion temperature it offers. When glass fibers are mixed with nylon resins, a composite material is formed.
It is used for components that are high-performing. The glass fibers used in the material range between 10 to 40% of the total weight.
Properties of Glass Filled Nylon
Glass-filled nylon has been chosen for different projects due to its excellent properties. Some of its properties are as follows:
- Glass-filled nylon offers excellent strength and fatigue resistance.
- It does not deform easily and is also warp-resistant due to its low thermal expansion.
- Glass-filled nylon can work under a wide temperature range and maintains its dimensional stability as well.
- It offers seamless creep resistance, and even when subjected to mechanical pressure, it prevents deformation.
- It is highly shock absorbing and can even resist vibration, so it is suitable for applications that are vibration-sensitive.
Advantages of Glass Filled Nylon
Glass-filled nylon offers multiple benefits, which is why it is used in many applications, and some of these are as follows:
High Moldability
Glass-filled nylon can be molded in versatile shapes and designs, regardless of its complexity. It can be used for injection molding, and the required product is achieved.
High Electrical Insulation
Glass-filled nylon has seamless electrical insulation. It is, therefore, used for electronic component manufacturing.
Enhanced Strength
It has high tensile strength and an enhanced modulus of elasticity, which makes it suitable for applications that require load-bearing capacity and structural integrity.
Excellent Impact Resistance
The glass and nylon combination improves cracking resistance and allows it to handle more pressure. Hence, applications that involve dynamic loading find it suitable.
High Dimensional Stability
The addition of glass fibers in the nylon lowers the coefficient of thermal expansion. It also makes the material dimensionally stable.
Hence, there is a reduced chance of warping, expansion, or shrinking due to the changes in temperature.
Disadvantages of Glass Filled Nylon
Glass-filled nylon has ample benefits, but there are some downsides of it, too, which are as follows:
- Glass-filled nylon has a higher weight, which is about 15% more than nylon, which makes it unstable for low-weight applications.
- It has anisotropic properties, which cause misalignment of glass fiber in the machining process, leading to varied stiffness through different axes of the component.
- The impact of glass fiber on the mating surface may be abrasive, and hence, it is not suitable for sliding applications.
- It absorbs moisture, which is why structural weakness is observed in it when subjected to wet environments.
- It's expensive compared to the unfilled nylon in most cases.
- It is highly brittle, and under a high-stress environment, it may fracture or crack.
How is Glass-Filled Nylon Used in Parts Production?
The process of manufacturing glass-filled nylon is discussed below.
Maquinação CNC
Maquinação CNC is a very ideal process when it comes to manufacturing components using glass-filled nylon.
It is, however, suggested that carbide-based cutting tools be used when machining glass-filled nylon due to its abrasive properties. Moreover, during machining, it is suggested to even work on low cutting speed, which also offers optimal cuts with low tool wear.
Impressão 3D
3D printing is an additive manufacturing process that utilizes glass-filled nylon and manufactures 3D components. The process works by adding layer after layer using different 3D printing methods.
The nozzles for 3D printing that work with glass-filled nylon should be made of hardened steel to deal with the abrasive nature of the material.
Moldagem por injeção
The injection molding process uses different types of glass-filled nylon. The material offers high abrasion. Hence, the materials used for injection molding tools must be able to deal with this abrasion and are preferred to be made using hard steel.
Common Types of Glass-Filled Nylon
There are different grades of glass-filled nylon, and each type has its own properties and uses. Some of these common grades of glass-filled nylon are as follows:
PA 6/6 GF
PA 6/6 GF has about 15 to 50% glass material, and it has excellent impact resistance, rigidity, and thermal properties. It also has good thermal stability and moisture resistance.
Hence, it is widely used in precision-oriented applications and load-bearing parts like machine components and pulleys.
PA 6 GF
PA 6 GF has a ratio of glass of about 15 to 45% combined with nylon 6. The addition of glass fiber improves the impact resistance, moisture absorption, and mechanical performance of the material. It is then used in engine guards and plastic enclosures.
PA 12 GF
PA 12 GF has PA 12 as a base material, and its glass is enforced in a ratio of up to 30%. It offers high chemical resistance and also has a low melting point with limited strength.
However, it is suitable for such applications which require stable chemical properties rather than mechanical ones.
PA 46 GF
PA 46 GF is high-performing glass-filled nylon. It has high wear resistance and excellent thermal stability. It is suitable for most applications, like making circuit breaker components for electric motors and sensors.
PA 6/6 GF FR
PA 6/6 GF FR has flame-retardant properties. Hence, it is suitable for applications in which safety from fire hazards is needed. It is mostly used in appliances and electrical circuits.
Applications of Glass Reinforced Nylon
There are many applications of glass-filled nylon, and some of these are as follows:
Aplicações industriais: It is used in industries for manufacturing different parts like pipes, valves, bushings, conveyor belts and other components for machinery.
Automóvel: The glass filled nylon is used in the automobile industry to make car components like gears, fan blades, fuel tank caps, and latches.
Eletrónica: Glass-filled nylon is used for earphones, printers, cameras, printer cartridges, and other electronic components.
Household: It is suitable for households manufacturing consumer products like vacuum cleaners, water purifiers, combs, and other appliances.
What’s the Difference Between Nylon 12 and Glass-Filled Nylon?
Glass-filled nylon is a nylon material that consists of glass fibers, making it stronger than nylon. It has high rigidity and is hence suitable for components that need excellent mechanical performance.
Nylon 12, on the other hand, offers impact resistance, mechanical strength, and resistance against chemicals. However, it has low friction and moisture absorption, which makes it work well in humid environments.
Get Machined Glass-Filled Nylon Parts at DEK
Glass filled nylon has versatile uses in different industries, and if you are looking for machine components made of glass filled nylon, you can contact DEK.
We design and manufacture custom glass filled nylon components for your projects as specified by you. We have advanced manufacturing processes, high-quality materials, and expert engineers.
Conclusão
As you have read the guide above, it would have been sufficient to help you with your new project related to glass filled nylon.
It is very crucial to understand the properties, manufacturing processes, and applications of this material before you choose it for your projects.
FAQs
How does glass-filled nylon compare to unfilled nylon?
Glass-filled nylon offers better strength, creep resistance, and dampening properties compared to unfilled nylon.
Is glass-filled nylon stronger than polymer?
Yes, glass-filled nylon offers superior strength compared to polymer.
How do you choose glass-filled nylon grade for machining applications?
Glass filled nylon is hard and strong with a high glass-fiber ratio, but the harder it is, the more difficult it is to machine.
What safety precautions are important when machining glass-filled nylon?
Glass-filled nylon, when machined, produces a lot of dust which can contaminate the environment of the workshop. It requires proper filtration and ventilation when machining it.
Aluminum has special physical and chemical properties, not only light weight, strong texture, corrosion resistance, and has good ductility, electrical conductivity, thermal conductivity, heat resistance and resistance to nuclear radiation, is the development of the national economy of the important basic raw materials, aluminum and aluminum alloys are widely used in various industries.
If you are considering aluminum die casting for your upcoming projects and want to learn about this process in detail, read the guide below.
What is Aluminum Die Casting?
Aluminum die casting manufactures lightweight aluminum components that have complex shapes and thin walls.
Aluminum has the ability to withstand corrosion resistance, and it even offers high electrical and thermal conductivity. It is a process that helps retain the strength of aluminum die-casted components even at extreme temperatures.
The aluminum die-casting process has been used for a long time, and the first aluminum die-casting was done in 1800 using pressure injection. In 1849, the first machine for die casting was manufactured. However, it was manually operated.
After 20 years, the development of that die casting printer was enhanced. It was used for different components manufactured in high volume by 1900.
Como é que funciona?
The process of aluminum die casting is carried out in multiple steps, and these are as follows:
- Aluminum bars are first heated at high temperatures until they melt. At the same time, a cold chamber setup is also used to avoid machine damage.
- The molten aluminum is kept in a melting pot away from the casting machine. It is then ladled from the pot into the die of the machine under high pressure.
- The aluminum in liquid form, after melting, is injected into the mold, and until solidified, it is left to rest.
- The two halves of the die are separated to eject the solidified aluminum component.
- The aluminum die-cast components might need the additional process of finishing so that the required surface finish is achieved.
Advantages of Aluminum Die Casting
The process of aluminum die casting is opted for because of the benefits it offers. Some of these benefits are as follows:
- This process manufactures components that have a smooth surface finish.
- It offers excellent tensile strength, and the cost of raw materials is low.
- The molecular structure of the components manufactured through die casting is firm and doesn't get cracks under pressure.
- It offers a thickness accuracy of less than 1.5.
- It offers durability and can produce complex shapes.
- The chemical and mechanical properties of aluminum die-casted components are excellent.
Types of Aluminum are Used for Die Casting
The aluminum alloys commonly used for die casting are the following:
- A390
- A380
- A413
- A360
- ADC-1
- ADC-12
The most important part of aluminum die casting is picking the right aluminum alloy. The A390 alloy offers excellent resistance against wear and is hard, but it is less flexible too. It can be used for engine blocks in automobiles.
A360, on the other hand, has excellent corrosion resistance and pressure tightness. When in the molten form, they are highly fluid and opted for oil pans of cars, 5G communication boxes, etc.
A380 alloy has seamless casting properties, and it can be used for household furniture and power tools.
Surface Finish Options for Die-Cast Aluminum
Die-cast aluminum can be treated with various surface finishing processes, and these are the following:
Anodização
Anodização is a cost-effective process that enhances the corrosion resistance of the components that are manufactured using aluminum die casting. It even enhances the durability of the components and adds a protective layer that is non-conductive.
Aluminum anodizing is used to build an oxide layer, which makes it non-conductive. Hence, it is suitable for applications where electrical conductivity is not needed.
Revestimento em pó
Powder coating is one of the widely opted processes for finishing the surface of aluminum components, which are manufactured through die casting.
This process is conducted in high temperature conditions and enhances the scratch resistance of the components. This process allows for having different gloss finishes, textures, and colors on the components.
Chem Film
Chem film is applied using various methods like dipping the component, brushing, or spraying. It offers high electrical conductivity to the aluminum die-casting components.
Applications of Aluminum Casting Parts
The aluminum die-casting components are widely used in many applications, and some of these applications are as follows:
Construção
In the construction industry, aluminum die casting helps manufacture frames for windows and roof structures. It is very commonly used in commercial buildings and bridges.
Automóvel
Aluminum alloys are high strength, and their weight is less, which makes them fuel-efficient when used in vehicles. Hence, the indústria automóvel uses these alloys in various applications ranging from body parts to the engine of the car.
Indústria eletrónica
Aluminum plays a vital role in manufacturing electronics with innovation. These electronics are produced using die-cast aluminum, which can be used in 5G network housing and smartphones.
Mobiliário
The furniture industry uses aluminum due to its high strength, low weight, and ability to resist corrosion. The components are low-cost and, hence, can be easily used for affordable furniture.
Chairs, locks, knobs, and other fittings in the furniture industry are manufactured using aluminum die-casted components.
Factors to Consider in the Design of Aluminum Die Casting Parts
When designing components using the process of aluminum casting, some of the factors that should be considered are as follows:
Design of Mold
The design of the mold needs to be perfect and efficient so that the aluminum parts come out perfectly. The mold has a parting line that divides it into two halves, and this should be considered when creating the components.
Injection Point Location
When the molten aluminum is injected into the mold, the point of injection must be carefully considered. It should be poured accurately, ensuring that it fills the cavity property because sometimes the solidification of metal takes place very quickly, leading to uneven texture.
Thickness of Wall
The thickness of the wall component is also very important to consider. It is important that you go for a consistent thickness which ensures uniformity in the component.
Conclusão
The guide above has all the important details regarding aluminum die casting. You can now start your project keeping in mind all these aspects and how you can have a seamless aluminum component.
Start Your Custom Aluminum Die Casting Prototypes and Parts with DEK
If you are looking for help in your aluminum die-casting project, we at DEK can assist you. We have years of experience manufacturing aluminum components using die-casting processes.
We also ensure that we provide you with custom components based on your specifications. So, get in touch with us today and help us cater your projects.
Elastomers of different types are used in manufacturing a wide range of components. Sometimes, they are also used for making prototypes.
If you are looking forward to learning about elastomer prototyping, the guide below is the key to the details.
What is Elastomer?
Elastomers are polymers which offer elasticity and viscosity.
Elastomer molecules can be joined together with the help of weak intermolecular forces that offer high yield strength and low Young's modulus.
Elastomers have the ability to gain their actual shape again after they have been stretched.
Types of Elastomer
There are two types of elastomers, and each type has its properties, as discussed below.
Saturated Elastomer
Saturated elastomers offer stability against ozone, radiation, heat and oxygen. These are not curable by sulfur vulcanization and have less reactivity.
Silicone and polyacrylic rubbers are the types of saturated elastomers.
Unsaturated Elastomer
Unsaturated elastomers are capable of being cured with the process of sulfur vulcanisation. The types of unsaturated elastomers are composed of natural polyisoprene and butyl rubber.
Methods to Produce Elastomeric Prototypes
There are different methods which can be used to produce elastomer prototypes, and these are as follows:
Fresagem CNC
Fresagem CNC is a process in which the software instructs tools of a CNC machine to shape and cut the elastomers.
The nature of elastomers is highly flexible, and this requires a lot of care during the machining process.
It is very important to avoid deformation by choosing the right speed of cutting tools and cooling methods.
The process of CNC milling is suitable for such prototypes of elastomers that need high accuracy, complex geometries, and intricate details.
It is usually opted for low-volume production of elastomer components.
Moldagem por injeção
Moldagem por injeção also helps manufacture elastomer prototypes in larger quantities. The elastomers are melted and injected into the mold, which has already been manufactured beforehand.
Once the molten elastomer has cooled down and solidified, it is demolded.
The process of injection molding can be repeated multiple times to manufacture more components of the same design.
It is very easy to manufacture prototypes of different elastomers using injection molding. The cost of mold, however, is high, and hence it is suitable for high volume production.
Impressão 3D
Impressão 3D deposits the material layer by layer to create a 3D component. Elastomer materials can also be used for manufacturing properties using 3D printing.
The process is flexible and offers quick changes with no expenses whenever needed in the design. Hence, this process is suitable for short runs and rapid prototyping.
It helps to create complex components and that too very quickly.
Design Considerations Of Elastomer Prototyping
When carrying out elastomer prototyping, there are a few design considerations that play a vital role, and these are as follows:
Material
When designing the prototype of elastomers, the right type of elastomer should be chosen for the application. The hardness, flexibility, strength and elongation are the aspects to consider.
Moreover, the compression ability of the material should be assessed to ensure it retains its original shape over time.
Espessura da parede
The thickness of the wall when manufacturing a prototype using an elastomer is important to maintain. When doing processes like injection molding, inconsistent thickness may lead to warping.
Hence, the thickness of the walls must be accurate. The thin walls lead to deformation and thick lead to improper filling.
Formas complexas
If the design has complex geometries, the elastomer prototyping can be challenging. It could lead to difficulty in ejecting the component and deformation.
In this case, the use of flexible inserts, draft angles and multi-part molds can be helpful.
Consider Shrinkage
Elastomers have a tendency to shrink once cured or molded. Hence, when designing a prototype using elastomers, consider the shrinkage.
Moreover, sometimes it gets very difficult to maintain tolerance with elastomers due to high flexibility; hence, setting realistic expectations is important.
Acabamento da superfície
The surface finish of the elastomers plays a vital role in aesthetics as well as functionality.
Hence, it is important to have a smooth finish to help reduce friction. At the same time, a textured surface helps enhance grip.
The finishing of the prototypes also impacts the way elastomers interact with coatings. Hence, a finish should be chosen with the balance of performance and appearance in mind.
Start Prototyping Rubber Parts Efficiently with DEK
DEK offers to manufacture prototypes of rubber parts using different manufacturing processes.
We analyze the type of elastomers you want to use and choose the most relevant manufacturing process.
We have a team of expert engineers to offer their expertise in the manufacturing process of your components. So, get in touch with us to make the best of our prototyping services.
Conclusão
Understanding details about elastomers, processes involved in prototyping them, and their types is very crucial before you use them in your projects.
As you have read the guide above, every detail regarding the material must be clear allowing you to make informed decisions.
O alumínio é um material versátil amplamente utilizado que tem muitos graus. O alumínio 7075 é também um tipo muito comum, que tem múltiplas aplicações e propriedades.
Se pretende utilizar o alumínio 7075 nos seus projectos e quer aprender mais sobre ele, leia o guia abaixo.
O que é a liga de alumínio?
As ligas de alumínio são metais que têm o alumínio como metal principal, seguido de outros elementos como o estanho, o cobre, o magnésio, etc. A combinação destes elementos de liga com o alumínio cria um novo grau que modifica a estrutura e as propriedades do alumínio.
Composição do alumínio 7075
O alumínio 7075 é um liga de alumínio que possui os seguintes elementos de liga:
- 87 a 91% de alumínio
- 5 a 6% de zinco
- 0-0,3% de manganês
- 1,2 a 2% de cobre
- 2.1-2.9% de magnésio
- 0-0,5% ferro
- 0,0-0,2% titânio
- 0,18-2% crómio
- 0.05-0.15% outros tipos de elementos
Estes elementos, quando adicionados ao alumínio em quantidades tão pequenas, modificam as propriedades do alumínio e tornam-no adequado para diferentes aplicações.
Propriedades do alumínio 7075
O alumínio 7075 tem as seguintes propriedades:
- Tem uma densidade de 2,81 g/cm3 e uma resistência à tração de 228-572MPa; a resistência ao escoamento é de 103-503MPa.
- O módulo de elasticidade varia entre 71,7 e 72,4 GPa, e a dureza Brinell é de 60-150.
- O módulo de cisalhamento é de 26,9-27 GPa, e o alongamento na rutura é de 5% a 19%. A resistência ao cisalhamento é de 152-331 MPa, e a resistência à fadiga é de até 159 MPa.
- O alumínio 7075 oferece uma condutividade térmica de 130-173 W/mK e uma capacidade térmica específica de 0,96KJ/kg°C.
- Tem um ponto de fusão de 477°C.
- O alumínio 7075 tem uma resistência moderada à corrosão e uma elevada maquinabilidade, mas não possui uma boa soldabilidade.
Vantagens da utilização do alumínio 7075
As vantagens de optar pelo alumínio 7075 para os diferentes projectos são as seguintes
- O alumínio 7075 oferece uma elevada relação resistência/peso.
- Funciona bem sob tensão devido à sua elevada resistência à fadiga. Por conseguinte, as aplicações em que os componentes são sujeitos a pressão podem considerar o alumínio 7075 adequado.
- O alumínio 7075 é altamente maquinável e pode ser escolhido para o fabrico de componentes.
- O alumínio 7075 não é muito resistente à corrosão, mas algumas das suas têmperas, como a T73, são adequadas para aplicações marítimas e exteriores.
- Tem um elevado módulo de elasticidade e é dimensionalmente estável.
Limitações do alumínio 7075
O alumínio 7075 oferece vantagens, mas também tem algumas limitações; algumas dessas limitações são as seguintes:
- O alumínio 7075 tem uma soldabilidade limitada e requer técnicas especiais de soldadura. Além disso, tem tendência para fissurar durante o processo de soldadura.
- Quando comparado com outros tipos de alumínio, o alumínio 7075 oferece uma resistência limitada à corrosão e, por conseguinte, não pode ser utilizado em ambientes húmidos, a menos que seja tratado.
- As ligas de alumínio, com exceção da 7075, são bastante acessíveis, ao passo que a 7075 é muito cara e não pode ser uma escolha adequada para projectos com orçamento limitado.
Processo de fabrico do alumínio 7075
O processo de fabrico do alumínio 7075 envolve diferentes técnicas e os três métodos mais populares são apresentados em seguida.
Maquinação CNC
A maquinagem CNC do alumínio 7075 utiliza um processo de fabrico controlado por software. É utilizado um bloco de alumínio 7075 e as ferramentas de corte permitem a modelação e o fabrico de componentes.
Alumínio 7075 oferece uma boa maquinabilidade e tende a produzir componentes de elevada precisão. As aplicações que necessitam de componentes de alumínio 7075 com tolerância apertada optam pela maquinação CNC.
Extrusão de alumínio
O extrusão de alumínio ajuda a fabricar componentes a partir do alumínio 7075. Neste processo, o alumínio é aquecido e forçado através de uma matriz, de modo a criar componentes com a forma da matriz.
O processo é adequado para o fabrico de múltiplos componentes com consistência e uma estrutura longa. Este processo oferece componentes com propriedades mecânicas melhoradas e é económico.
Fundição injectada
Fundição injectada O processo consiste em injetar o alumínio 7075 em forma fundida nos moldes, utilizando alta pressão. Depois de o material arrefecer e solidificar, toma a forma do molde.
Os componentes fabricados através da fundição injectada oferecem uma qualidade consistente e têm normalmente formas complexas.
Comparação do alumínio 7075 com outras ligas
Existem diferentes ligas de alumínio, e as comparações do alumínio 7075 com essas ligas são apresentadas abaixo.
Alumínio 7075 vs. Alumínio 6061
Alumínio 6061 é também conhecido como alumínio estrutural e é utilizado na indústria da construção. É maioritariamente utilizado para extrusão de canos, tubos, barras de alumínio, etc. É um material versátil e é escolhido para dissipadores de calor e quadros de bicicletas.
Em comparação com o 7075O 6061 tem uma melhor resistência à corrosão, uma elevada maquinabilidade e pode mesmo ser soldado. No entanto, a resistência do 6061 não é tão boa como a do 7075.
Alumínio 7075 vs. Alumínio 2024
Alumínio 2024 é popular em aplicações aeroespaciais e é escolhido para fuselagens e asas de aeronaves. É durável e é escolhido para aplicações que necessitam de resistência à fadiga cíclica.
O alumínio 7075, por outro lado, é adequado para aplicações que têm um ambiente de alta tensão e pressão. Os dois não oferecem alta soldabilidade e até têm a mesma maquinabilidade.
No entanto, o 7075 tem melhor resistência à corrosão, enquanto o 2024 tem melhor trabalhabilidade.
Aplicações do alumínio 7075
As aplicações do alumínio 7075 podem ser vistas em diferentes indústrias; algumas dessas aplicações são as seguintes:
Aeroespacial: É utilizado em asas, fuselagens e componentes estruturais de aeronaves devido à sua elevada relação resistência/peso.
Automóvel: Na indústria automóvel, os veículos de alto desempenho são maioritariamente escolhidos para o fabrico dos seus componentes, como chassis, veios de transmissão e peças de suspensão.
Marinha: As aplicações marítimas também utilizam o alumínio 7075, mas requerem alguns revestimentos adicionais para que os componentes marítimos fabricados em alumínio 7075 resistam à corrosão.
Ferramentas e moldes: O alumínio 7075 oferece uma elevada resistência, o que é adequado para o fabrico de ferramentas, matrizes e moldes para diferentes processos de fabrico.
Conclusão
Ao selecionar a liga de alumínio 7075, a compreensão das suas propriedades revela-se altamente significativa.
Como já passou pelo guia, deve agora saber pormenores importantes sobre o alumínio 7075. Se precisar de mandar fabricar componentes de alumínio 7075 com elevada precisão, contacte-nos em DEK.
Screws play a vital role in all types of projects, and you can have custom micro screws designed.
If you are planning to come up with a new project and want to learn about micro screws, the guide below has all the information regarding custom micro screw manufacturing.
What are Custom Micro Screws?
Custom screws are used in applications where standard screws cannot be used. These custom micro screws cater to the unique requirements of the project.
These screws are suitable for precision-oriented applications like aerospace, electronics, and medical. These industries cannot tolerate even a minor deviation.
These custom screws are made using versatile materials which cater the application requirements like corrosion resistance, weight considerations, and durability. These screws even ensure aesthetics and integrity.
Benefits of Custom Micro Screws
Custom micro screws are used widely in many applications; some of the benefits of custom micro screws are as follows:
- Custom micro screws are designed so that they meet the precise requirements of applications for which these are used.
- The custom micro screws can be optimized to meet the specific resistance to wear, corrosion and offer required strength.
- The custom micro screws can be made with versatile materials; these materials are chosen based on the environment they are opted for use. For instance, stainless steel micro screws can be chosen for an environment exposed to corrosion and high temperature.
- Certain industries need to fit very small components with perfection. Hence, these custom micro screws can be designed in the tiniest size to cater for precision.
- As they have the exact dimensions required for the application, the final product tends to have better performance and quality.
6 Drive Types for Custom Screws
The six drive types for custom screws which are commonly opted for are as follows:
Phillips Drive
Phillips drive has a cross-shaped slot, which is used for self-centering characteristics. The chances of slippage are very less in this type of screw. It is suitable for automated production lines and is also used in consumer electronics.
Torx Drive
Torx drive has a pattern of star shape. It has high torque transmission and less risk of cam-out. It is suitable for applications that require high precision, such as electronics and aerospace.
Slotted Drive
Slotted drives have a straight slot and have a very simple operation, but they can cam out. These are used in applications that need precise control of torque.
Tri-Wing Drive
Tri-wing drive has a slotted pattern in a triangular pattern and is used in applications that need tamper and stress resistance. It is commonly used in electronic devices that have a high control over access for adjustments and repairs.
Allen Drive (Hex Socket)
Allen drive has a hexagonal socket and works with an Allen key. It offers excellent torque and is used in automobile and machinery applications.
Robertson Drive (Square Recess)
Square recess offers cam-out resistance and a high capacity of torque. It is very commonly used in construction and woodworking as it is easy to use and holds strongly.
Custom Micro Screws Head Styles
The head style designed in custom screws requires balancing the screw fist and meets the specific application requirements. The head style should meet the space, torque, and ease of assembling requirements.
Moreover, the head style must have an aesthetic appearance in applications where they are visible. The main goal is to create a screw head that meets the design requirements, ease of use, and mechanical needs of the product.
Material Selection of Custom Micro Screws
The material of custom micro screws plays a vital role in performance and durability. Based on the environment it will be exposed to, the material is chosen for these screws. Some of the commonly adopted materials are as follows:
Metais
The different types of metals are commonly chosen for the micro screws; some of these metals are as follows:
- Stainless steel is a highly corrosion-resistant material that is suitable for applications that are exposed to moisture or outdoors.
- Aluminum is a lightweight material and is suitable for applications that are weight-sensitive.
- Brass is also resistant to corrosion and offers moderate strength. It is heavier than aluminum but not as heavy as steel. It is chosen for decorative purposes.
Plásticos
- Nylon is suitable for insulation and also is lightweight. It offers chemical and corrosion resistance and works well in light-duty applications.
- Polycarbonate has excellent resistance against impact and corrosion and is used in applications that need transparency and lightweight screws.
- PVC is highly corrosion-resistant and soft and is used in plumbing applications as it resists chemicals and water.
- ABS is extremely strong and lightweight and, hence, can work in electronics and automobile applications.
The Importance of Precision in Size and Tolerance
The custom micro screws need to be highly precise and tolerant for the sizes; a minor deviation may lead to issues with their performance. Hence, the tolerance of these screws must be very carefully adjusted.
These custom micro screws are mostly used in sensitive applications like aerospace, electronics, and medicine.
The manufacturing process for these screws needs to be highly precise and consistent. The accuracy of these screws offers successful projects as they work with effectiveness.
Threading and its Impact on Micro Applications
The threading of custom micro screws is also vital for their functionality as it determines their fitting into different applications. The aspects like depth, pitch, and influence of profile are very important; they reflect the way the screw interacts with the material.
Industries like medical and microelectronics are highly precise industries, and they prefer fine threads for the micro screws.
These screws ensure a very strong grip and also secure the materials very well. The design of the thread also impacts the way screws can be fixed and removed.
The load distribution is also affected by the threading of the screw, and it impacts the wear resistance, durability, and strength in applications where they are used repetitively.
Manufacturing Method of Custom Micro Screw
The manufacturing process of custom micro screws varies based on the material and applications. Some of the commonly opted micro screw manufacturing processes are as follows:
Maquinação CNC
Maquinação CNC is one of the most precision-oriented methods which helps to manufacture micro screws. The process works using CNC-controlled machines, which have highly accurate and detailed manufacturing capabilities.
The block of material is carved to manufacture the micro screw based on the custom design. This process helps manufacture micro screws with tight tolerance, and industries like aerospace and medical use it.
Swiss Screw Machining
Swiss screw machining or Swiss turning is a machining process that helps manufacture micro screws with the help of a lathe.
The workpiece is fixed and rotated, allowing the lathe to cut the workpiece and derive the micro screw. The micro screws that have complex geometry are usually manufactured through this process.
Thread Rolling
The thread-rolling process creates threads on the micro screws. The process starts by pressing a die that is shaped on the workpiece and rotates. The process helps to create strong threads and offers fatigue resistance.
Cold Heading
The process of cold heading involves a metal wire which is cut into the given length, and then a screw shape is formed at room temperature.
This process is suitable for producing custom micro screws in mass volume, and it offers strength to these screws with work hardening. These micro screws are mostly used in the automobile industry.
Micro Injection Molding
The process of micro injection molding helps in producing micro screws that are manufactured using plastics.
The process of injection molding works by injecting molten plastic into the mold, which is left for solidification. The process is suitable for manufacturing plastic screws which are highly precise and suitable for the electronic industry.
Applications of Custom Micro Screws
Custom micro screws are used in many industries, and some of their applications are as follows:
Eletrónica
Electronics are of varied sizes, and each of them requires different screws to fix components. Microelectronics usually need micro screws as they can easily align the components.
Some of the devices like mobiles, tablets, circuit boards, and smartwatches are assembled using micro screws.
Médico
Micro screws are used in the medical industry for assembling surgical tools, orthopedic implants, dental implants, and even in diagnostic equipment. The precision of these micro screws tends to cater to the sector médico with highly accurate fixation.
Aeroespacial
The aerospace industry requires custom micro screws, which are strong, lightweight, and precise; aircraft components and satellites tend to have these.
Automóvel
Micro screws help in fastening electronic systems and sensors of the engine. They are especially used in motorcycles, racing cars, and electric vehicles, as precision is significant here.
How to Balance Cost and Quality?
Custom micro screw selection is successful when there is a balance between quality and cost. The low-cost screw helps save upfront costs, but in the longer run, the high cost of maintenance and failure risk is present.
Whereas, when you invest in high-quality screws, the cost is high, but the performance and durability are top-notch.
The key to success in these custom micro screws is to choose the screws with moderate cost and also meet quality standards.
Start Your Custom Micro Screw Project with DEK
If you are looking for high-quality and cost-effective custom micro screws which offer precision, you can consider DEK. We offer multiple methods of manufacturing these micro screws– customized according to your specifications and precision.
So, get in touch with us today and specify your application requirements for the custom micro screws.
Conclusão
The significance of custom micro screws in multiple applications plays a vital role. The guide above must have given you an insight into the types of micro screws and manufacturing processes.
Understanding all these details helps you make informed decisions regarding micro screw selection for your applications.
A maquinagem CNC é um processo comum que é feito para fabricar componentes para várias indústrias. É compatível com quase todos os tipos de materiais, incluindo a cerâmica.
Se você quiser aprender sobre usinagem CNC de cerâmica, o guia abaixo pode oferecer muitos detalhes. Então vamos ler.
O que é a maquinagem CNC em cerâmica?
A maquinagem CNC em cerâmica é um processo em que as ferramentas de maquinagem CNC são utilizadas para remover material da peça de trabalho em cerâmica.
A remoção do material ajuda a dar forma aos componentes cerâmicos. A máquina trabalha com ferramentas que funcionam de acordo com as instruções do software CAD.
São selecionados diferentes tipos de materiais cerâmicos para criar componentes com precisão e tolerância apertada para indústrias versáteis.
Quais são as propriedades da cerâmica?
A cerâmica é um material não metálico e tem várias propriedades que a tornam adequada para diferentes utilizações. Algumas destas propriedades da cerâmica são as seguintes
- As cerâmicas são muito duras e, por isso, resistentes aos riscos e ao desgaste. Por isso, são adequadas para optar por revestimentos protectores, ferramentas de corte e abrasivos.
- As cerâmicas são frágeis e podem partir-se quando sujeitas a pressão. No entanto, podem resistir a determinadas forças.
- As cerâmicas têm um elevado ponto de fusão, o que as torna adequadas para aplicações como escudos térmicos e revestimentos de fornos.
- As cerâmicas são maus condutores de calor e, por isso, podem ser escolhidas para aplicações como componentes de motores e telhas de vaivéns espaciais. Não transferem facilmente o calor.
- A cerâmica é resistente aos ataques de produtos químicos, à oxidação e até à corrosão. Por conseguinte, pode ser adequada para ambientes agressivos.
Operações de maquinagem CNC para cerâmica
As operações de maquinagem CNC mais utilizadas para o fabrico de componentes cerâmicos são apresentadas em seguida:
Fresagem CNC
O Processo de fresagem CNC molda componentes cerâmicos removendo o material cerâmico da peça de trabalho. A ferramenta de corte gira e esculpe um desenho na peça de cerâmica.
Este processo ajuda a criar formas complexas e cortes consistentes. Os componentes cerâmicos fabricados através deste processo têm um acabamento de superfície muito suave.
Perfuração com núcleo
A perfuração com núcleo é também uma técnica de perfuração que extrai o material de uma peça de cerâmica sob a forma de uma secção cilíndrica. Este processo ajuda a fazer furos precisos e cria um caminho para a montagem de componentes ou cabos eléctricos.
A maquinação CNC dirige a fresa de forma rotativa para criar um furo com o tamanho e a posição exactos.
Retificação de superfícies
A retificação de superfícies utiliza uma mó para efetuar o acabamento da superfície do componente cerâmico. Este processo é utilizado para produzir componentes com precisão e acabamentos suaves. A retificação de superfícies é utilizada para peças cerâmicas planas ou com superfícies paralelas.
Tipos de cerâmica para maquinagem CNC
A maquinagem CNC é efectuada numa grande variedade de cerâmicas, e alguns destes tipos são os seguintes:
Cerâmica de alumina
A cerâmica de alumina é frágil e dura, pelo que necessita de taxas de avanço lentas seguidas de ferramentas precisas.
É utilizado no fabrico de isoladores eléctricos, componentes resistentes ao desgaste e implantes para a área médica utilizando maquinagem CNC. São conhecidos pela sua resistência à corrosão e resistência à tração.
Nitreto de boro
O nitreto de boro é muito desafiador quando se trata de usinagem, e pode ser usinado usando ferramentas altamente avançadas. Tem um excelente isolamento e condutividade térmica. Por isso, é utilizado em aplicações de isolamento e de semicondutores.
Cerâmica de carboneto de silício
É muito duro e, ao maquiná-lo, a necessidade de líquido de arrefecimento e de ferramentas diamantadas é significativa para evitar o desgaste da ferramenta. É utilizado principalmente no fabrico de permutadores de calor, rolamentos e aplicações de semicondutores. Oferece uma excelente estabilidade térmica e dureza.
Cerâmica de zircónio
A cerâmica de zircónio é resistente e pode ser maquinada utilizando ambientes de maquinação altamente controlados com ferramentas de diamante. É utilizada para fabricar sensores de oxigénio, ferramentas de corte e implantes dentários. Oferece uma excelente resistência ao desgaste, tenacidade e estabilidade química.
Cerâmica de esteatita
É macio e, por conseguinte, fácil de maquinar. É também conhecido pelo seu preço acessível e pelas suas propriedades eléctricas perfeitas. É utilizado em condensadores, isolamentos eléctricos, etc.
Quartzo
O quartzo é frágil e pode rachar facilmente. Por conseguinte, necessita de um manuseamento muito cuidadoso durante o processo de maquinagem. É transparente e tem uma excelente condutividade eléctrica. É maioritariamente utilizado no fabrico de sensores piezoeléctricos, dispositivos ópticos e aplicações de semicondutores.
Cerâmica de cordierite
É muito fácil de maquinar e oferece uma excelente resistência ao choque térmico. É utilizado principalmente em aplicações como mobiliário de forno, conversores catalíticos e barreiras térmicas.
Macor
Macor é altamente maquinável e não necessita de ferramentas especializadas. Oferece isolamento elétrico e é escolhido para componentes médicos, câmaras de vácuo e componentes eléctricos.
Vidro
O vidro é muito sensível e quebradiço, pelo que requer uma maquinação cuidadosa com ferramentas de diamante. É conhecido pela sua transparência e pelas suas elevadas propriedades ópticas. É utilizado principalmente em fibras ópticas, ecrãs de visualização e lentes ópticas.
Grafite
A grafite é muito macia, tem um excelente poder de lubrificação e possui condutividade térmica. É utilizada no fabrico de lubrificantes, calços de travões, eléctrodos e cadinhos.
Mycalex
É frágil, mas ainda pode ser maquinado com ferramentas de metal duro. Os parâmetros de maquinação devem ser cuidadosamente definidos. É utilizado em ambientes de alta temperatura, uma vez que oferece isolamento elétrico.
Vantagens da maquinagem CNC em cerâmica
Os componentes cerâmicos são maquinados por CNC porque oferecem excelentes vantagens quando combinados com este processo. Alguns dos benefícios da maquinação CNC de cerâmica são os seguintes
- A maquinagem CNC de cerâmica é um processo versátil que pode fabricar componentes cerâmicos com exatidão e precisão.
- A maquinagem CNC para cerâmica é bastante rentável quando comparada com outros métodos como o corte por jato de água e o corte por laser. Tem uma elevada taxa de produção e custos operacionais mais baixos.
- A maquinagem CNC permite ajustes imediatos e, por conseguinte, pode satisfazer a escalabilidade dos componentes cerâmicos maquinados por CNC.
- A maquinagem CNC de cerâmica é um processo preciso e pode lidar com a fragilidade da cerâmica.
- O processo de maquinação CNC para cerâmica ajuda a criar componentes com geometrias complexas.
- Os componentes cerâmicos fabricados por maquinagem CNC têm uma tolerância apertada, tal como exigido pela maioria das aplicações.
Desafios na maquinagem CNC de cerâmica
Embora a maquinagem CNC em cerâmica tenha várias vantagens, tem também alguns desafios, que são os seguintes:
- As cerâmicas são frágeis porque têm estruturas cristalinas e, por isso, são propensas a fissuras durante o processo de maquinagem.
- Os materiais cerâmicos estão em risco quando maquinados, uma vez que demasiada pressão pode levar à lascagem e fissuração dos componentes.
- Alguns tipos de cerâmica são muito duros e não podem ser maquinados com ferramentas normais. Necessitam de ferramentas altamente avançadas, ou provocam o desgaste das ferramentas. Isto acaba por aumentar o custo das ferramentas.
Aplicações da maquinagem CNC em cerâmica
As cerâmicas são normalmente utilizadas, e as aplicações da maquinagem CNC de cerâmicas podem ser observadas em várias indústrias, e algumas delas são as seguintes:
Cerâmica de engenharia
Os componentes cerâmicos maquinados por CNC são utilizados na cerâmica de engenharia, uma vez que podem suportar altas pressões e temperaturas. Assim, são fabricados componentes como revestimentos de combustão, permutadores de calor e peças de turbinas.
O processo de maquinagem CNC oferece precisão e, por conseguinte, durante a produção, o risco de fissuras também é reduzido.
Setor da saúde
Os materiais cerâmicos são adequados para aplicações médicas devido à sua biocompatibilidade. Podem ser facilmente maquinados por CNC e utilizados em substituições de articulações e implantes com a elevada precisão que oferecem.
Indústria aeroespacial
O indústria aeroespacial utiliza componentes cerâmicos maquinados por CNC devido à sua leveza e natureza complexa. Os componentes para a indústria aeroespacial, como escudos térmicos, bicos de motores a jato e lâminas de turbinas, são fabricados com esta cerâmica.
A maquinagem CNC torna estes componentes precisos e, devido à sua leveza, oferecem eficiência de combustível.
Indústria eletrónica
A maquinagem CNC de cerâmica ajuda a fabricar vários componentes para a indústria eletrónica. Os componentes como os substratos semicondutores e as placas de circuitos necessitam de uma elevada resistência dieléctrica. Por conseguinte, a maquinagem CNC de precisão é utilizada para fabricar estes componentes.
Conselhos para a conceção e maquinagem CNC de cerâmica
Ao conceber e maquinar componentes cerâmicos em CNC, algumas das dicas que garantem um processo de maquinação eficaz e resultados óptimos são as seguintes:
- É muito importante escolher o tipo correto de cerâmica. Factores como a resistência ao desgaste, a dureza e a estabilidade térmica são importantes.
- As ferramentas à base de carboneto e as ferramentas à base de diamante são os dois tipos de ferramentas adequadas para a maquinação CNC de cerâmica. Podem lidar com durezas extremas e, por isso, tornam o processo de maquinagem eficiente.
- É muito importante gerir os parâmetros de maquinagem, como a taxa de avanço, a profundidade do corte e a velocidade de corte. Podem ajudar a reduzir o desgaste e garantir um desempenho ótimo.
- A utilização de líquido de arrefecimento é importante na maquinagem de cerâmica, uma vez que ajuda a controlar o calor e também garante que o componente não sofre danos.
Inicie o seu projeto de maquinação CNC de cerâmica com a DEK
Se está ansioso por ter componentes de maquinagem CNC de cerâmica personalizados concebidos e fabricados para os seus produtos, pode dar-nos uma oportunidade de o servir.
Nós da DEK assinar um acordo de não divulgação para manter a confidencialidade das suas informações comerciais e dos seus projectos.
Além disso, dispomos de uma equipa experiente de engenheiros com máquinas CNC altamente avançadas que fornecem componentes sem falhas.
Conclusão
A cerâmica é um material muito versátil e tem muitos tipos. Cada tipo tem propriedades únicas. Deve ter aprendido tudo sobre a cerâmica e o processo de maquinagem CNC da cerâmica, o que lhe oferece a capacidade de tomar decisões informadas para os seus projectos.
Molybdenum machining is a challenging task due to the material's nature. It requires specialized processes and different CNC techniques to help achieve the desired results.
If you are willing to learn about the machining process of molybdenum and the important aspects that you must know. Read the guide below.
Understanding Molybdenum Metal
Molybdenum is not very commonly used like steel and aluminum. It is a refractory metal and is a good conductor of electricity. The melting point of molybdenum is 2623° C.
This material also offers high resistance against corrosion and a low coefficient of thermal expansion. It has high strength and can be used in applications that are high-stress.
Techniques in Molybdenum Machining
Molybdenum Machining uses different CNC techniques to achieve the desired details and shapes in the molybdenum components. Some of the techniques adopted for machining molybdenum are as follows:
Fresagem CNC
Fresagem CNC uses cutting tools that rotate and cut the material from the workpiece. It helps create components that have detailed features and complex geometries. The material molybdenum is hard and hence requires carbide cutting tools for the milling process.
The milling process of molybdenum is carried out at low speed as it helps reduce heat buildup. Moreover, the feed rate must be maintained optimally to help avoid tool wear.
During the process of milling, a coolant is applied so that overheating can be avoided and the tool life is improved.
Torneamento CNC
Torneamento CNC helps produce components of molybdenum that are cylindrical in shape. The workpiece rotates during the turning process, and the cutting tool stays in its position.
It helps to maintain precise control over the process of cutting, and carbide tools are opted to ensure clean cuts.
During the CNC turning process of molybdenum, the cooling systems are put in place so that heat can be prevented. The tool path and cutting speed are optimized to achieve a smooth surface finish.
Perfuração CNC
Perfuração CNC uses high-speed steel drills, and these drills allow the creation of holes of different depths and sizes. The CNC drilling process helps to drill along multiple axes so that precise holes with intricacy can be achieved.
Challenges in Machining Molybdenum
Molybdenum has impressive properties, but sometimes, the hardness and strength of this material turn out to be challenging for the machinist. Some challenges faced while machining molybdenum are as follows:
Brittleness
Molybdenum offers seamless hardness, and hence, sometimes cutting it could be a challenge. The traditional methods of machining, when used for cutting the molybdenum, make it difficult to achieve clean cuts.
Sometimes, cutting molybdenum could be extremely challenging and lead to tool wear. The brittle nature of molybdenum results in chips being produced, and this causes difficulty in machining.
The problem of brittleness can be resolved by using carbide-made cutting tools that help cut molybdenum effectively. Also, tools with sharp cutting edges help cut neat edges without any chip production.
Ponto de fusão elevado
Molybdenum has a high melting point, which can favor some applications, but at the same time, machining due to high melting points can be a challenge. Traditional methods of cooling during the process of machining can be insufficient, and the surface finish can be compromised.
In order to deal with the problem of high melting point during machining, coolants that are high performance should be opted for. The water-miscible coolants prove to be helpful to reduce heat.
You can also use a small amount of lubricant, which helps to minimize the coolant consumption, and also choose tools that are made of heat-resistant materials. Such tools are composed of cobalt-based alloys, which stay intact during high temperatures.
Common Grades of Molybdenum Alloy in Machining
Molybdenum has multiple applications and different grades. Each grade has its own properties and suitability for an application. Some of the common grades of machining are as follows:
Pure Molybdenum
Pure molybdenum consists of a very small amount of impurities and a major amount of molybdenum. It has excellent strength and doesn't corrode; it also offers a high melting point.
It is suitable for use in manufacturing furnace components, electrodes for electron beam welding, and crucibles.
TZM Molybdenum Alloy
TZM molybdenum has high strength and toughness. It consists of alloys like tantalum and zirconium. The addition of these two elements ensures to improvement in the creep resistance of molybdenum.
It is suitable for applications involving electrical contacts with high temperatures, engine nozzles for rockets, and gas turbine blades.
Molybdenum-Lanthanum Alloy
Molybdenum-lanthanum alloy helps reduce the wear of machining tools. It also improves the recrystallization of molybdenum and hence is opted for components that need precision. It is opted for aerospace components and semiconductor applications.
Surface Finishes for Machined Molybdenum Parts
Once the process of machining molybdenum is completed, the components may require additional finishing. Some of these options for surface finishing are as follows:
Polimento
The polishing process involves using abrasives, which help to smoothen the molybdenum component surfaces. It also helps to reduce the roughness and improves the finishing of the surface of the parts.
It is suitable for the parts that require high finished gloss and also enhances the functionality of the components.
Jato de areia
Sandblasting uses abrasive particles to blast the surface in order to create a texture to clean it. This process creates uniformity and also removes the contaminants from the surface of molybdenum. This process prepares the surface for further finishing processes.
Passivação
Passivation treats the surface of molybdenum with a solution that has acid, which enhances the corrosion resistance. The process of passivation also removes contaminants and creates a layer of passive oxide.
This layer protects the component from oxidation and even enhances its durability when subjected to a corrosive environment.
Hard Chrome Plating
Hard chrome plating creates a chromium layer on the surface of molybdenum components. This layer gives the component improved hardness and resistance against corrosion and wear. The hard chrome plating makes the surface more durable.
Revestimento
Coating involves methods like CVD or PVS; the layer of coating improves the protection of the component, adding wear and corrosion resistance. It improves the performance of the components and helps them perform even in harsh environments.
Applications of Molybdenum CNC Machining
Molybdenum machined components are widely used for catering to various industries, and some of the applications of these components are discussed below:
High-Temperature Equipment: Molybdenum is highly suitable for furnace components and heat exchangers as it can withstand extreme heat.
Chemical Processing: It is highly corrosion resistant and hence is chosen for chemical plants to manufacture its fittings, pipes, and valves.
Wear-Resistant Components: Molybdenum is hard and hence is used in crushing machinery, mining equipment and tools for oil drilling.
Semiconductor Manufacturing: The chemical resistance and purity of molybdenum makes it suitable for semiconductor applications.
Gas Turbine Blades: It has high heat resistance, and machined molybdenum components are suitable for jet engines.
Weapon Systems: It offers wear resistance and reliability when chosen for weapon systems.
Start Your CNC Machining Molybdenum Project with DEK
As mentioned above, the molybdenum machining process could be challenging. If you are also looking forward to having services for machining molybdenum for your applications, contact us.
Nós da DEK ensure high-quality, precise, and affordable molybdenum components. We also sign an NDA with you; you can rest assured about the confidentiality of business information.
Conclusão
The molybdenum machining process has a wide range of applications and properties, which makes it extremely suitable for CNC machining. However, there are some challenges, and those can be managed with efficiency.
A maquinagem CNC é um processo muito comum para o fabrico de componentes utilizados em aplicações versáteis de materiais.
No entanto, investir em equipamento de maquinagem CNC e na formação do pessoal pode ser um encargo adicional. Para evitar este tipo de investimentos, muitas empresas optam por externalizar a maquinagem CNC.
Se quiser saber tudo sobre a externalização da maquinagem CNC, pode consultar este guia.
O que é a externalização da maquinagem CNC de precisão?
A maquinagem CNC em outsourcing é uma configuração em que tem de colaborar com fornecedores externos de serviços de maquinagem CNC. Estes dispõem das máquinas, do pessoal formado e dos conhecimentos necessários para fabricar os componentes.
Os componentes de maquinagem CNC produzidos têm tolerâncias apertadas e elevada precisão. Ao optar pela subcontratação dos processos de maquinagem CNC, pode usufruir de componentes rentáveis sem qualquer investimento interno.
Vantagens da subcontratação da maquinagem CNC
A externalização da maquinagem CNC tem amplas vantagens, algumas das quais são as seguintes
Flexibilidade
Os processos de maquinagem CNC, quando subcontratados, oferecem-lhe flexibilidade. Pode sempre escalar o seu nível de produção para satisfazer os seus requisitos e a procura do mercado. Pode ajustar o fornecimento de componentes de acordo com a procura.
Alta precisão
Os componentes CNC são componentes altamente precisos e é impossível atingir esta precisão com métodos manuais de fabrico.
O processo de maquinagem CNC, quando subcontratado, permite-lhe ter componentes altamente precisos para diferentes aplicações.
Controlo de alta qualidade
A qualidade é uma consideração importante nos componentes fabricados através da maquinagem CNC. O processo em si é automatizado e, por isso, os resultados são óptimos.
No entanto, o prestador de serviços também garante a consistência da qualidade em todo o lote de componentes.
Pequeno investimento
A rentabilidade das empresas depende muito do controlo dos custos. Quando se compra uma máquina CNC por conta própria, é necessário um investimento elevado.
No entanto, em externalizaçãoO utilizador paga pelos componentes que adquiriu. Assim, se tem uma pequena empresa, pode beneficiar da externalização.
Não precisa de fazer um investimento elevado e pode gerir eficazmente o seu capital.
Competências especializadas
Os prestadores de serviços de maquinagem CNC são especialistas e possuem competências e experiência relevantes no fabrico de componentes utilizando a maquinagem CNC.
Assim, quando os considera para a externalização do seu componente maquinado CNC, pode ter a certeza de resultados de alta qualidade.
Risco minimizado
O processo de maquinagem também implica a possibilidade de erros, o que leva ao desperdício de material.
Ao subcontratar a maquinagem CNC dos componentes, pode proteger-se do risco de erros e desperdícios.
Tempo de resposta rápido
A externalização da maquinagem CNC ajuda-o a ter uma produção rápida. Os componentes são produzidos rapidamente e, por isso, pode lançar os seus produtos muito rapidamente.
Desafios da externalização da maquinagem CNC
A subcontratação da maquinagem CNC traz amplas vantagens, mas, ao mesmo tempo, também tem de enfrentar alguns desafios. Alguns desses desafios são os seguintes:
Barreiras de comunicação
Manter uma coordenação e comunicação eficazes com os fornecedores de serviços de maquinagem CNC pode ser um desafio.
Pode haver barreiras linguísticas e pode ser difícil acompanhar o calendário de produção, os requisitos de qualidade e os prazos de entrega.
Risco de direitos intelectuais
Quando subcontrata a maquinagem CNC dos seus componentes, tem de partilhar os seus desenhos com eles, o que pode ser uma preocupação.
Alguns dos desenhos podem ser os seus próprios desenhos personalizados, que pode querer manter confidenciais. Neste caso, devem ser assinados acordos para proteger a propriedade intelectual da empresa.
Controlo de qualidade
Quando se subcontrata o fabrico de componentes CNC, o fabricante dispõe de equipamento altamente avançado, mas o controlo de qualidade pode continuar a ser um desafio.
Antes de entregar o projeto de componentes de maquinagem CNC a um fornecedor, certifique-se de que conhece o seu sistema de controlo de qualidade.
Risco da cadeia de abastecimento
Quando se depende de um fornecedor para os componentes maquinados CNC, é necessário lidar com o risco da cadeia de abastecimento. Vários factores externos, como questões políticas, meteorológicas e outras circunstâncias imprevistas, podem afetar a cadeia de abastecimento.
Custo a longo prazo
O custo dos componentes pode ser mais baixo a curto prazo ou quando as quantidades são limitadas. No entanto, a longo prazo, o custo da externalização pode ser muito elevado, especialmente quando é necessário fabricar um grande número de componentes.
Indústrias comuns que utilizam a terceirização da usinagem CNC
Muitas indústrias subcontratam a maquinagem CNC a prestadores de serviços, e algumas dessas indústrias são as seguintes:
Aeroespacial
A indústria aeroespacial exige componentes fabricados com materiais versáteis, mas duradouros, e de elevada precisão. A maquinação CNC assegura a consistência e a tolerância exacta.
Assim, componentes aeroespaciais como peças de motores, lâminas de turbinas e componentes estruturais, são geralmente externalizados.
Indústria automóvel
A indústria automóvel também utiliza a maquinagem CNC e produz componentes versáteis. Estes componentes consistem em protótipos, componentes de motores e caixas de transmissão.
As empresas do sector automóvel podem manter um elevado padrão de qualidade e poupar nos custos de produção através da externalização destes componentes.
Indústria médica
O sector da saúde requer uma vasta gama de componentes maquinados por CNC, uma vez que a exatidão e a precisão são vitais nestas aplicações.
A maquinagem CNC permite a produção de instrumentos médicos como implantes, instrumentos cirúrgicos e componentes de equipamento médico. Por conseguinte, a indústria médica subcontrata o fabrico destes componentes.
Eletrónica
Os componentes electrónicos, como conectores, caixas e dissipadores de calor, exigem uma tolerância apertada e desenhos precisos, pelo que são maquinados por CNC. Os fabricantes de componentes electrónicos subcontratam o processo de fabrico destes componentes a fornecedores.
Como escolher o parceiro certo para o serviço de maquinagem CNC em outsourcing?
Para fabricar componentes precisos, é muito importante escolher a fornecedor de serviços de externalização. Alguns dos aspectos a considerar a este respeito são os seguintes:
- O fornecedor de serviços de maquinagem CNC que escolher deve oferecer todos os tipos de serviços de maquinagem CNC, incluindo torneamento CNC, perfuração CNC, fresagem CNC e até EDM. Também deve oferecer acabamento de superfície para que os componentes estejam prontos para uso.
- O historial dos prestadores de serviços dá uma ideia dos seus serviços e da sua qualidade. Pode sempre considerar verificar os seus projectos anteriores e o feedback de clientes anteriores. Isso ajuda-o a avaliar a sua fiabilidade.
- Os fornecedores de maquinagem CNC com os quais tenciona estabelecer uma parceria devem ser transparentes e acessíveis. Deve poder comunicar com eles livremente e discutir as suas necessidades; devem também estar dispostos a mantê-lo atualizado.
- O serviço de maquinagem CNC prestado a quem pretende subcontratar os projectos de maquinagem CNC deve estar equipado com equipamento avançado. A equipa de que dispõem deve também possuir competências e experiência relevantes e procurar também as suas certificações.
- É muito importante escolher um serviço de outsourcing para maquinagem CNC que ofereça uma boa relação qualidade/preço. O prestador de serviços correto irá oferecer-lhe componentes de alta qualidade sem comprometer a qualidade, o prazo de entrega e a precisão dos componentes.
Inicie o seu projeto de Outsourcing de maquinação CNC com a DEK
Se procura o prestador de serviços certo para o seu projeto de maquinagem CNC, pode contactar-nos em DEK. Oferecemos componentes maquinados em CNC de alta qualidade, personalizados de acordo com as suas necessidades.
Dispomos de uma equipa de profissionais experientes, qualificados e dedicados à produção de peças exactas e precisas. Pode confiar em nós para os seus projectos, uma vez que estamos dispostos a assinar um NDA consigo para manter os seus desenhos e detalhes comerciais confidenciais.
Conclusão
A subcontratação de componentes CNC traz amplas vantagens; pode, enquanto empresa, concentrar-se noutras áreas essenciais e obter a compensação fabricada para si.
O guia acima deve tê-lo esclarecido com todos os pormenores essenciais sobre a externalização da maquinagem CNC.
Titanium polishing is important as it enhances the surface finish of titanium components. It helps to remove most of the titanium material from the component to add smoothness.
If you want to learn what is titanium polishing, you can read this guide below.
What is Titanium Polishing?
The process of titanium polishing uses a polishing wax and buffing wheel, which helps reduce the roughness of components. This process enhances the appearance of the titanium component.
Once the component is machined, polishing gives additional coverage and protection to it with a better finish.
Polishing is also a process that allows you to exercise high control; you can, therefore, polish complex and small components of titanium with high precision.
How to Polish Titanium with A Mirror Finish?
The process of polishing titanium with a mirror finish has the following steps:
Cleaning and Degreasing
Titanium manufacturing may leave behind residue and grease on the component, which needs to be cleaned. You can clean it with the help of degreasing agents and then rinse the component well.
Once it is appropriately soaked in water, remove and dry it properly.
Process of Sanding
On the clean and dry titanium component, smoothen the component’s surface with the help of sandpaper. The process of sanding allows the oxidized layer on the surface to be removed. It even improves the metal adhesion for better results after polishing.
Process of Buffing
Buffing gives a mirror-like, shiny appearance to the titanium component. The surface is first cleaned with an alcohol-based cleanser. Once clean, the buffing wheel and metal polish are used to polish, and water is applied to control the heat.
Finishing Stage
After the buffing process, some marks may be left behind on the component. In order to remove these marks, a paint polish is applied on a clean towel, and the surface is rubbed.
A layer of sealant is also applied and left to dry. It achieves the final polished look with a shiny appearance.
Why is Titanium Polishing Important?
There are various reasons that make titanium polishing important, and some of these are as follows:
- The physical appearance of the titanium component is very crucial, along with its performance. Polishing the components enhances the physical look and improves its aesthetics. The surface polishing ensures that the required gloss is achieved on the component.
- The layer of polish on the titanium component enhances its corrosion resistance and wear resistance and even reduces friction.
- Titanium is a poor conductor of electricity. Adding a polished finish allows current to travel through the titanium component, making it conductive.
- The life span of titanium components increases when a layer of polish is added to their surface. It offers corrosion and wear resistance, which makes it durable.
Different Types of Titanium Surface Polishing
Different types of surface polishing options are available for titanium. Some of these are as follows:
Rough Polishing
Rough polishing can be achieved with an abrasive buffing wheel. The wheel has titanium wax polish and silicon oxide and works with minimal force. It is suitable for the round-off corners of components.
Medium Polishing
Medium polishing uses abrasive when made using polish wax and aluminum oxide. Rough polishing leaves behind a dull surface, which can be brightened and smoothed using medium polishing.
Fine Polishing
Fine polishing makes the component of titanium reflective. It uses a wax polish and a soft cotton buffing wheel. It creates a fine surface, and more pressure is exerted on it.
Mirror Polishing
Mirror polishing for titanium components offers a surface finish that looks like a mirror.
The process uses polished wax and a soft buffing wheel, which is made using cotton. This type of buffing wheel is capable of reaching the areas of the component that are difficult to access.
Methods of Polishing Titanium
There are different methods that can be opted for when it comes to polishing titanium, and these are as follows:
Mechanical Polishing
Mechanical polishing is a process in which either machine force or manual force is used to remove material from the surface of titanium. This process helps reduce imperfections on the surface and allows for smoothness.
The process consists of using a combination of coarse and finer grits to remove the material from titanium and achieve a polished finish.
Electropolimento
Electropolishing uses electric current, which creates a chemical reaction leading to polishing the surface. It helps in removing the layer of titanium material and even works well with complex shapes.
The titanium part is submerged in a chemical bath, and the material is removed through anodic dissolution as the current passes.
Chemical Polishing
The process of chemical polishing uses chemical solutions that help in polishing the titanium surface. The titanium part is immersed in a chemical bath, which has acids, and these remove the imperfections of the surface.
It is suitable for the complex and internal areas which are difficult to reach using other methods. It offers a uniform surface finish and is used in medical and aerospace applications.
Plasma Polishing
Plasma polishing is a process in which plasma jets are used. These help to remove the surface material and create a neatly finished surface.
The plasma jet ionizes the titanium and removes the material in a very controlled way. It is suitable for high-precision parts.
Ultrasonic Polishing
Ultrasonic polishing applies ultrasonic vibrations to titanium surfaces. It is a very quick and easy process that leaves behind a seamless finish.
The consistent production of ultrasonic vibration works efficiently regardless of the thrust force.
Tips for Effective Titanium Polishing
Some key tips for effective titanium polishing are as follows:
- Choose the right abrasives for polishing. The coarse grits are opted for the start and then gradually move towards the finer grits.
- Try to use wet sanding so that heat can be reduced and a smooth finish is achieved.
- Do not polish the entire surface in one go. Gradually polish stage by stage to attain optimal outcomes.
- Avoid using coolants as it leads to discoloration of titanium components.
Applications of Polished Titanium Parts
Polished components of titanium cater to various industries, and these are as follows:
Setor aeroespacial
Aerospace uses titanium components which are polished as they offer excellent resistance against corrosion. These components are high-strength and lightweight. Engine components of aircraft are manufactured using these parts.
Medical Sector
O medical sector uses titanium polished parts in orthopedic and dental departments. These polished titanium components are used in knee, hip, and dental implants. They offer excellent resistance to chemicals and have high strength.
Setor automóvel
The automobile industry uses titanium polished components in its vehicles as they offer a high strength-to-weight ratio. These components enhance the fuel efficiency of the vehicle, causing it to incur low operating costs.
Moreover, being corrosion resistant, these components are used in exhaust systems of cars as well.
Marine Sector
Titanium is also a commonly adopted material when it comes to marine applications. The polished titanium is marine grade due to its high resistance against corrosion and strength in seawater.
The titanium components can withstand the effects of the environment and hence work well as sea equipment.
Other Surface Finishes Compatible with Titanium Parts
The titanium components, after machining, can be subjected to some other types of surface finishes, too, and these are as follows:
Anodização
It is an electrochemical process of finishing in which the titanium component is dipped in an electrolyte, and current is passed through it. The process transforms the surface of titanium into titanium oxide, which is durable and resistant to corrosion.
Escovagem
This process gives titanium components a bright and flawless surface. The marks of cutting tools and scratches can easily be removed. It enhances the surface using abrasive brushes.
Galvanoplastia
It is a process in which the titanium components get a layer of protection created on the surface. The metals used for adding this layer are tin, nickel, and gold. It improves the corrosion and wear resistance.
Revestimento em pó
Powder coating is a process of application of dry powder to titanium components. It enhances the aesthetic finish of titanium components.
Conclusão
Titanium polishing enhances the surface of the titanium components in a very commendable way.
If you want to have the titanium components polished for various applications, you can contact us at DEK. We offer different polishing methods and processes at affordable prices and excellent finishing.
FAQs
Can you polish old titanium parts?
Yes, polishing an old titanium part would make it look as good as new.
What is the best buffing compound for titanium?
Green rogue is the best buffing compound for titanium.
How do I choose a buffing wheel for titanium polishing?
When choosing the buffing wheel, look at the ply– the higher the ply, the wider and thicker the buffing wheel will be.
What type of sandpaper works on titanium?
Sandpaper, which is made of silicon carbide of aluminum oxide, is the best for titanium.
What are the common titanium polishing tools and equipment?
The tools and equipment used in titanium polishing are polishing pads, abrasive components for polishing, buffing and cotton polishing wheels, brushes, and sisal.